1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
/* %W% %G% %U% - (c) Copyright 1987, 1988 Chuck Simmons */
/*
* Copyright (C) 1987, 1988 Chuck Simmons
*
* See the file COPYING, distributed with empire, for restriction
* and warranty information.
*/
/*
game.c -- Routines to initialize, save, and restore a game.
*/
#ifdef SYSV
#include <string.h>
#else
#include <strings.h>
#endif
#include <ctype.h>
#include <curses.h>
#include "empire.h"
#include "extern.h"
long remove_land(long loc, long num_land);
/*
Initialize a new game. Here we generate a new random map, put cities
on the map, select cities for each opponent, and zero out the lists of
pieces on the board.
*/
void init_game () {
void make_map(), place_cities();
long i;
kill_display (); /* nothing on screen */
automove = FALSE;
resigned = FALSE;
debug = FALSE;
print_debug = FALSE;
print_vmap = FALSE;
trace_pmap = FALSE;
save_movie = FALSE;
win = 0;
date = 0; /* no date yet */
user_score = 0;
comp_score = 0;
for (i = 0; i < MAP_SIZE; i++) {
user_map[i].contents = ' '; /* nothing seen yet */
user_map[i].seen = 0;
comp_map[i].contents = ' ';
comp_map[i].seen = 0;
}
for (i = 0; i < NUM_OBJECTS; i++) {
user_obj[i] = NULL;
comp_obj[i] = NULL;
}
free_list = NULL; /* nothing free yet */
for (i = 0; i < LIST_SIZE; i++) { /* for each object */
piece_info_t *obj = &(object[i]);
obj->hits = 0; /* mark object as dead */
obj->owner = UNOWNED;
LINK (free_list, obj, piece_link);
}
make_map (); /* make land and water */
do {
for (i = 0; i < MAP_SIZE; i ++) { /* remove cities */
if (map[i].contents == '*')
map[i].contents = '+'; /* land */
}
place_cities (); /* place cities on map */
} while (!select_cities ()); /* choose a city for each player */
}
/*
Create a map. To do this, we first randomly assign heights to each
map location. Then we smooth these heights. The more we smooth,
the better the land and water will clump together. Then we decide
how high the land will be. We attempt to choose enough land to meet
some required percentage.
There are two parameters to this algorithm: the amount we will smooth,
and the ratio of land to water. The user can provide these numbers
at program start up.
*/
#define MAX_HEIGHT 999 /* highest height */
/* these arrays give some compilers problems when they are automatic */
static int height[2][MAP_SIZE];
static int height_count[MAX_HEIGHT+1];
void make_map () {
int from, to, k;
long i, j, sum, loc;
for (i = 0; i < MAP_SIZE; i++) /* fill map with random sand */
height[0][i] = irand (MAX_HEIGHT);
from = 0;
to = 1;
for (i = 0; i < SMOOTH; i++) { /* smooth the map */
for (j = 0; j < MAP_SIZE; j++) {
sum = height[from][j];
for (k = 0; k < 8; k++) {
loc = j + dir_offset[k];
/* edges get smoothed in a wierd fashion */
if (loc < 0 || loc >= MAP_SIZE) loc = j;
sum += height[from][loc];
}
height[to][j] = sum / 9;
}
k = to; /* swap to and from */
to = from;
from = k;
}
/* count the number of cells at each height */
for (i = 0; i <= MAX_HEIGHT; i++)
height_count[i] = 0;
for (i = 0; i <= MAP_SIZE; i++)
height_count[height[from][i]]++;
/* find the water line */
loc = MAX_HEIGHT; /* default to all water */
sum = 0;
for (i = 0; i <= MAX_HEIGHT; i++) {
sum += height_count[i];
if (sum * 100 / MAP_SIZE > WATER_RATIO && sum >= NUM_CITY) {
loc = i; /* this is last height that is water */
break;
}
}
/* mark the land and water */
for (i = 0; i < MAP_SIZE; i ++) {
if (height[from][i] > loc)
map[i].contents = '+'; /* land */
else map[i].contents = '.'; /* water */
map[i].objp = NULL; /* nothing in cell yet */
map[i].cityp = NULL;
j = loc_col (i);
k = loc_row (i);
map[i].on_board = !(j == 0 || j == MAP_WIDTH-1
|| k == 0 || k == MAP_HEIGHT-1);
}
}
/*
Randomly place cities on the land. There is a minimum distance that
should exist between cities. We maintain a list of acceptable land cells
on which a city may be placed. We randomly choose elements from this
list until all the cities are placed. After each choice of a land cell
for a city, we remove land cells which are too close to the city.
*/
/* avoid compiler problems with large automatic arrays */
static long land[MAP_SIZE];
void place_cities () {
long regen_land();
long placed, i, loc;
long num_land;
num_land = 0; /* nothing in land array yet */
placed = 0; /* nothing placed yet */
while (placed < NUM_CITY) {
while (num_land == 0) num_land = regen_land (placed);
i = irand (num_land-1); /* select random piece of land */
loc = land[i];
city[placed].loc = loc;
city[placed].owner = UNOWNED;
city[placed].work = 0;
city[placed].prod = NOPIECE;
for (i = 0; i < NUM_OBJECTS; i++)
city[placed].func[i] = NOFUNC; /* no function */
map[loc].contents = '*';
map[loc].cityp = &(city[placed]);
placed++;
/* Now remove any land too close to selected land. */
num_land = remove_land (loc, num_land);
}
}
/*
When we run out of available land, we recreate our land list. We
put all land in the list, decrement the min_city_dist, and then
remove any land which is too close to a city.
*/
long regen_land (placed)
long placed;
{
long num_land;
long i;
num_land = 0;
for (i = 0; i < MAP_SIZE; i++) {
if (map[i].on_board && map[i].contents == '+') {
land[num_land] = i; /* remember piece of land */
num_land++; /* remember number of pieces */
}
}
if (placed > 0) { /* don't decrement 1st time */
MIN_CITY_DIST -= 1;
ASSERT (MIN_CITY_DIST >= 0);
}
for (i = 0; i < placed; i++) { /* for each placed city */
num_land = remove_land (city[i].loc, num_land);
}
return (num_land);
}
/*
Remove land that is too close to a city.
*/
long remove_land (loc, num_land)
long loc, num_land;
{
long new, i;
new = 0; /* nothing kept yet */
for (i = 0; i < num_land; i++) {
if (dist (loc, land[i]) >= MIN_CITY_DIST) {
land[new] = land[i];
new++;
}
}
return (new);
}
/*
Here we select the cities for the user and the computer. Our choice of
cities will be heavily dependent on the difficulty level the user desires.
Our algorithm will not guarantee that either player will eventually be
able to move armies to any continent on the map. There may be continents
which are unreachable by sea. Consider the case of an island in a lake.
If the lake has no shore cities, then there is no way for a boat to reach
the island. Our hope is that there will be enough water on the map, or enough
land, and that there will be enough cities, to make this case extremely rare.
First we make a list of continents which contain at least two cities, one
or more of which is on the coast. If there are no such continents, we return
FALSE, and our caller should decide again where cities should be placed
on the map. While making this list, we will rank the continents. Our ranking
is based on the thought that shore cities are better than inland cities,
that any city is very important, and that the land area of a continent
is mildly important. Usually, we expect every continent to have a different
ranking. It will be unusual to have two continents with the same land area,
the same number of shore cities, and the same number of inland cities. When
this is not the case, the first city encountered will be given the highest
rank.
We then rank pairs of continents. We tell the user the number of different
ranks, and ask the user what rank they want to use. This is how the
user specifies the difficulty level. Using that pair, we have now decided
on a continent for each player. We now choose a random city on each continent,
making sure the cities are not the same.
*/
#define MAX_CONT 10 /* most continents we will allow */
typedef struct cont { /* a continent */
long value; /* value of continent */
int ncity; /* number of cities */
city_info_t * cityp[NUM_CITY]; /* pointer to city */
} cont_t;
typedef struct pair {
long value; /* value of pair for user */
int user_cont; /* index to user continent */
int comp_cont; /* index to computer continent */
} pair_t;
static int marked[MAP_SIZE]; /* list of examine cells */
static int ncont; /* number of continents */
static cont_t cont_tab[MAX_CONT]; /* list of good continenets */
static int rank_tab[MAX_CONT]; /* indices to cont_tab in order of rank */
static pair_t pair_tab[MAX_CONT*MAX_CONT]; /* ranked pairs of continents */
int select_cities () {
void find_cont(), make_pair();
long compi, useri;
city_info_t *compp, *userp;
int comp_cont, user_cont;
int pair;
find_cont (); /* find and rank the continents */
if (ncont == 0) return (FALSE); /* there are no good continents */
make_pair (); /* create list of ranked pairs */
(void) sprintf (jnkbuf,
"Choose a difficulty level where 0 is easy and %d is hard: ",
ncont*ncont-1);
pair = get_range (jnkbuf, 0, ncont*ncont-1);
comp_cont = pair_tab[pair].comp_cont;
user_cont = pair_tab[pair].user_cont;
compi = irand ((long)cont_tab[comp_cont].ncity);
compp = cont_tab[comp_cont].cityp[compi];
do { /* select different user city */
useri = irand ((long)cont_tab[user_cont].ncity);
userp = cont_tab[user_cont].cityp[useri];
} while (userp == compp);
addprintf ("Your city is at %d.", userp->loc,0,0,0,0,0,0,0);
delay (); /* let user see output before we set_prod */
/* update city and map */
compp->owner = COMP;
compp->prod = ARMY;
compp->work = 0;
scan (comp_map, compp->loc);
userp->owner = USER;
userp->work = 0;
scan (user_map, userp->loc);
set_prod (userp);
return (TRUE);
}
/*
Find all continents with 2 cities or more, one of which must be a shore
city. We rank the continents.
*/
void find_cont () {
long i;
long mapi;
for (i = 0; i < MAP_SIZE; i++) marked[i] = 0; /* nothing marked yet */
ncont = 0; /* no continents found yet */
mapi = 0;
while (ncont < MAX_CONT)
if (!find_next (&mapi)) return; /* all found */
}
/*
Find the next continent and insert it in the rank table.
If there are no more continents, we return false.
*/
int find_next (mapi)
long *mapi;
{
long i, val;
for (;;) {
if (*mapi >= MAP_SIZE) return (FALSE);
if (!map[*mapi].on_board || marked[*mapi]
|| map[*mapi].contents == '.') *mapi += 1;
else if (good_cont (*mapi)) {
rank_tab[ncont] = ncont; /* insert cont in rank tab */
val = cont_tab[ncont].value;
for (i = ncont; i > 0; i--) { /* bubble up new rank */
if (val > cont_tab[rank_tab[i-1]].value) {
rank_tab[i] = rank_tab[i-1];
rank_tab[i-1] = ncont;
}
else break;
}
ncont++; /* count continents */
return (TRUE);
}
}
}
/*
Map out the current continent. We mark every piece of land on the continent,
count the cities, shore cities, and land area of the continent. If the
continent contains 2 cities and a shore city, we set the value of the
continent and return true. Otherwise we return false.
*/
static long ncity, nland, nshore;
int good_cont (mapi)
long mapi;
{
static void mark_cont();
long val;
ncity = 0; /* nothing seen yet */
nland = 0;
nshore = 0;
mark_cont (mapi);
if (nshore < 1 || ncity < 2) return (FALSE);
/* The first two cities, one of which must be a shore city,
don't contribute to the value. Otherwise shore cities are
worth 3/2 an inland city. A city is worth 1000 times as much
as land area. */
if (ncity == nshore) val = (nshore - 2) * 3;
else val = (nshore-1) * 3 + (ncity - nshore - 1) * 2;
val *= 1000; /* cities are worth a lot */
val += nland;
cont_tab[ncont].value = val;
cont_tab[ncont].ncity = ncity;
return (TRUE);
}
/*
Mark a continent. This recursive algorithm marks the current square
and counts it if it is land or city. If it is city, we also check
to see if it is a shore city, and we install it in the list of
cities for the continent. We then examine each surrounding cell.
*/
static void
mark_cont (mapi)
long mapi;
{
int i;
if (marked[mapi] || map[mapi].contents == '.'
|| !map[mapi].on_board) return;
marked[mapi] = 1; /* mark this cell seen */
nland++; /* count land on continent */
if (map[mapi].contents == '*') { /* a city? */
cont_tab[ncont].cityp[ncity] = map[mapi].cityp;
ncity++;
if (rmap_shore (mapi)) nshore++;
}
for (i = 0; i < 8; i++) /* look at surrounding squares */
mark_cont (mapi + dir_offset[i]);
}
/*
Create a list of pairs of continents in a ranked order. The first
element in the list is the pair which is easiest for the user to
win with. Our ranking is simply based on the difference in value
between the user's continent and the computer's continent.
*/
void make_pair () {
int i, j, k, npair;
long val;
npair = 0; /* none yet */
for (i = 0; i < ncont; i++)
for (j = 0; j < ncont; j++) { /* loop through all continents */
val = cont_tab[i].value - cont_tab[j].value;
pair_tab[npair].value = val;
pair_tab[npair].user_cont = i;
pair_tab[npair].comp_cont = j;
for (k = npair; k > 0; k--) { /* bubble up new rank */
if (val > pair_tab[k-1].value) {
pair_tab[k] = pair_tab[k-1];
pair_tab[k-1].user_cont = i;
pair_tab[k-1].comp_cont = j;
}
else break;
}
npair++; /* count pairs */
}
}
/*
Save a game. We save the game in emp_save.dat. Someday we may want
to ask the user for a file name. If we cannot save the game, we will
tell the user why.
*/
/* macro to save typing; write an array, return if it fails */
#define wbuf(buf) if (!xwrite (f, (char *)buf, sizeof (buf))) return
#define wval(val) if (!xwrite (f, (char *)&val, sizeof (val))) return
void save_game () {
FILE *f; /* file to save game in */
f = fopen ("empsave.dat", "w"); /* open for output */
if (f == NULL) {
perror ("Cannot save empsave.dat");
return;
}
wbuf (map);
wbuf (comp_map);
wbuf (user_map);
wbuf (city);
wbuf (object);
wbuf (user_obj);
wbuf (comp_obj);
wval (free_list);
wval (date);
wval (automove);
wval (resigned);
wval (debug);
wval (win);
wval (save_movie);
wval (user_score);
wval (comp_score);
(void) fclose (f);
topmsg (3, "Game saved.",0,0,0,0,0,0,0,0);
}
/*
Recover a saved game from emp_save.dat.
We return TRUE if we succeed, otherwise FALSE.
*/
#define rbuf(buf) if (!xread (f, (char *)buf, sizeof(buf))) return (FALSE);
#define rval(val) if (!xread (f, (char *)&val, sizeof(val))) return (FALSE);
int restore_game () {
void read_embark();
FILE *f; /* file to save game in */
long i;
piece_info_t **list;
piece_info_t *obj;
f = fopen ("empsave.dat", "r"); /* open for input */
if (f == NULL) {
perror ("Cannot open empsave.dat");
return (FALSE);
}
rbuf (map);
rbuf (comp_map);
rbuf (user_map);
rbuf (city);
rbuf (object);
rbuf (user_obj);
rbuf (comp_obj);
rval (free_list);
rval (date);
rval (automove);
rval (resigned);
rval (debug);
rval (win);
rval (save_movie);
rval (user_score);
rval (comp_score);
/* Our pointers may not be valid because of source
changes or other things. We recreate them. */
free_list = NULL; /* zero all ptrs */
for (i = 0; i < MAP_SIZE; i++) {
map[i].cityp = NULL;
map[i].objp = NULL;
}
for (i = 0; i < LIST_SIZE; i++) {
object[i].loc_link.next = NULL;
object[i].loc_link.prev = NULL;
object[i].cargo_link.next = NULL;
object[i].cargo_link.prev = NULL;
object[i].piece_link.next = NULL;
object[i].piece_link.prev = NULL;
object[i].ship = NULL;
object[i].cargo = NULL;
}
for (i = 0; i < NUM_OBJECTS; i++) {
comp_obj[i] = NULL;
user_obj[i] = NULL;
}
/* put cities on map */
for (i = 0; i < NUM_CITY; i++)
map[city[i].loc].cityp = &(city[i]);
/* put pieces in free list or on map and in object lists */
for (i = 0; i < LIST_SIZE; i++) {
obj = &(object[i]);
if (object[i].owner == UNOWNED || object[i].hits == 0) {
LINK (free_list, obj, piece_link);
}
else {
list = LIST (object[i].owner);
LINK (list[object[i].type], obj, piece_link);
LINK (map[object[i].loc].objp, obj, loc_link);
}
}
/* Embark armies and fighters. */
read_embark (user_obj[TRANSPORT], ARMY);
read_embark (user_obj[CARRIER], FIGHTER);
read_embark (comp_obj[TRANSPORT], ARMY);
read_embark (comp_obj[CARRIER], FIGHTER);
(void) fclose (f);
kill_display (); /* what we had is no longer good */
topmsg (3, "Game restored from empsave.dat.",0,0,0,0,0,0,0,0);
return (TRUE);
}
/*
Embark cargo on a ship. We loop through the list of ships.
We then loop through the pieces at the ship's location until
the ship has the same amount of cargo it previously had.
*/
void read_embark (list, piece_type)
piece_info_t *list;
int piece_type;
{
void inconsistent();
piece_info_t *ship;
piece_info_t *obj;
int count;
for (ship = list; ship != NULL; ship = ship->piece_link.next) {
count = ship->count; /* get # of pieces we need */
if (count < 0) inconsistent ();
ship->count = 0; /* nothing on board yet */
for (obj = map[ship->loc].objp; obj && count;
obj = obj->loc_link.next) {
if (obj->ship == NULL && obj->type == piece_type) {
embark (ship, obj);
count -= 1;
}
}
if (count) inconsistent ();
}
}
void inconsistent () {
(void) printf ("empsave.dat is inconsistent. Please remove it.\n");
exit (1);
}
/*
Write a buffer to a file. If we cannot write everything, return FALSE.
Also, tell the user why the write did not work if it didn't.
*/
int xwrite (f, buf, size)
FILE *f;
char *buf;
int size;
{
int bytes;
bytes = fwrite (buf, 1, size, f);
if (bytes == -1) {
perror ("Write to save file failed");
return (FALSE);
}
if (bytes != size) {
perror ("Cannot complete write to save file.\n");
return (FALSE);
}
return (TRUE);
}
/*
Read a buffer from a file. If the read fails, we tell the user why
and return FALSE.
*/
int xread (f, buf, size)
FILE *f;
char *buf;
int size;
{
int bytes;
bytes = fread (buf, 1, size, f);
if (bytes == -1) {
perror ("Read from save file failed");
return (FALSE);
}
if (bytes != size) {
perror ("Saved file is too short.\n");
return (FALSE);
}
return (TRUE);
}
/*
Save a movie screen. For each cell on the board, we write out
the character that would appear on either the user's or the
computer's screen. This information is appended to 'empmovie.dat'.
*/
extern char city_char[];
static char mapbuf[MAP_SIZE];
void
save_movie_screen ()
{
FILE *f; /* file to save game in */
long i;
piece_info_t *p;
f = fopen ("empmovie.dat", "a"); /* open for append */
if (f == NULL) {
perror ("Cannot open empmovie.dat");
return;
}
for (i = 0; i < MAP_SIZE; i++) {
if (map[i].cityp) mapbuf[i] = city_char[map[i].cityp->owner];
else {
p = find_obj_at_loc (i);
if (!p) mapbuf[i] = map[i].contents;
else if (p->owner == USER)
mapbuf[i] = piece_attr[p->type].sname;
else mapbuf[i] = tolower (piece_attr[p->type].sname);
}
}
wbuf (mapbuf);
(void) fclose (f);
}
/*
Replay a movie. We read each buffer from the file and
print it using a zoomed display.
*/
void
replay_movie ()
{
void print_movie_cell();
FILE *f; /* file to save game in */
int row_inc, col_inc;
int r, c;
int round;
f = fopen ("empmovie.dat", "r"); /* open for input */
if (f == NULL) {
perror ("Cannot open empmovie.dat");
return;
}
round = 0;
clear_screen ();
for (;;) {
if (fread ((char *)mapbuf, 1, sizeof (mapbuf), f) != sizeof (mapbuf)) break;
round += 1;
stat_display (mapbuf, round);
row_inc = (MAP_HEIGHT + lines - NUMTOPS - 1) / (lines - NUMTOPS);
col_inc = (MAP_WIDTH + cols - 1) / (cols - 1);
for (r = 0; r < MAP_HEIGHT; r += row_inc)
for (c = 0; c < MAP_WIDTH; c += col_inc)
print_movie_cell (mapbuf, r, c, row_inc, col_inc);
(void) refresh ();
delay ();
}
(void) fclose (f);
}
/*
Display statistics about the game. At the top of the screen we
print:
nn O nn A nn F nn P nn D nn S nn T nn C nn B nn Z xxxxx
nn X nn a nn f nn p nn d nn s nn t nn c nn b nn z xxxxx
There may be objects in cities and boats that aren't displayed.
The "xxxxx" field is the cumulative cost of building the hardware.
*/
/* in declared order, with city first */
static char *pieces = "OAFPDSTCBZXafpdstcbz";
stat_display (mbuf, round)
char *mbuf;
int round;
{
long i;
int counts[2*NUM_OBJECTS+2];
int user_cost, comp_cost;
char *p;
(void) bzero ((char *)counts, sizeof (counts));
for (i = 0; i < MAP_SIZE; i++) {
p = strchr (pieces, mbuf[i]);
if (p) counts[p-pieces] += 1;
}
user_cost = 0;
for (i = 1; i <= NUM_OBJECTS; i++)
user_cost += counts[i] * piece_attr[i-1].build_time;
comp_cost = 0;
for (i = NUM_OBJECTS+2; i <= 2*NUM_OBJECTS+1; i++)
comp_cost += counts[i] * piece_attr[i-NUM_OBJECTS-2].build_time;
for (i = 0; i < NUM_OBJECTS+1; i++) {
pos_str (1, (int) i * 6, "%2d %c ", counts[i], pieces[i],0,0,0,0,0,0);
pos_str (2,(int) i * 6, "%2d %c ", counts[i+NUM_OBJECTS+1], pieces[i+NUM_OBJECTS+1],0,0,0,0,0,0);
}
pos_str (1, (int) i * 6, "%5d", user_cost,0,0,0,0,0,0,0);
pos_str (2, (int) i * 6, "%5d", comp_cost,0,0,0,0,0,0,0);
pos_str (0, 0, "Round %3d", (round + 1) / 2,0,0,0,0,0,0,0);
}
/*
Print a single cell in condensed format.
*/
extern char zoom_list[];
void
print_movie_cell (mbuf, row, col, row_inc, col_inc)
char *mbuf;
int row, col;
int row_inc, col_inc;
{
int r, c;
char cell;
cell = ' ';
for (r = row; r < row + row_inc; r++)
for (c = col; c < col + col_inc; c++)
if (strchr (zoom_list, mbuf[row_col_loc(r,c)])
< strchr (zoom_list, cell))
cell = mbuf[row_col_loc(r,c)];
(void) move (row/row_inc + NUMTOPS, col/col_inc);
(void) addch ((chtype)cell);
}
|