1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
/*
* Copyright 2015 The Emscripten Authors. All rights reserved.
* Emscripten is available under two separate licenses, the MIT license and the
* University of Illinois/NCSA Open Source License. Both these licenses can be
* found in the LICENSE file.
*/
#define _GNU_SOURCE
#include "../internal/libc.h"
#include "../internal/pthread_impl.h"
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/time.h>
#include <termios.h>
#include <unistd.h>
#include <utime.h>
#include <emscripten.h>
#include <emscripten/threading.h>
#include <emscripten/stack.h>
// With LLVM 3.6, C11 is the default compilation mode.
// gets() is deprecated under that standard, but emcc
// still provides it, so always include it in the build.
#if __STDC_VERSION__ >= 201112L
char* gets(char*);
#endif
// Extra pthread_attr_t field:
#define _a_transferredcanvases __u.__s[9]
void __pthread_testcancel();
int emscripten_pthread_attr_gettransferredcanvases(const pthread_attr_t* a, const char** str) {
*str = (const char*)a->_a_transferredcanvases;
return 0;
}
int emscripten_pthread_attr_settransferredcanvases(pthread_attr_t* a, const char* str) {
a->_a_transferredcanvases = (int)str;
return 0;
}
int _pthread_getcanceltype() { return pthread_self()->cancelasync; }
static void inline __pthread_mutex_locked(pthread_mutex_t* mutex) {
// The lock is now ours, mark this thread as the owner of this lock.
assert(mutex);
assert(mutex->_m_lock == 0);
mutex->_m_lock = pthread_self()->tid;
if (_pthread_getcanceltype() == PTHREAD_CANCEL_ASYNCHRONOUS)
__pthread_testcancel();
}
int sched_get_priority_max(int policy) {
// Web workers do not actually support prioritizing threads,
// but mimic values that Linux apparently reports, see
// http://man7.org/linux/man-pages/man2/sched_get_priority_min.2.html
if (policy == SCHED_FIFO || policy == SCHED_RR)
return 99;
else
return 0;
}
int sched_get_priority_min(int policy) {
// Web workers do not actually support prioritizing threads,
// but mimic values that Linux apparently reports, see
// http://man7.org/linux/man-pages/man2/sched_get_priority_min.2.html
if (policy == SCHED_FIFO || policy == SCHED_RR)
return 1;
else
return 0;
}
int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *restrict attr, int *restrict prioceiling)
{
// Not supported either in Emscripten or musl, return a faked value.
if (prioceiling) *prioceiling = 99;
return 0;
}
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int prioceiling)
{
// Not supported either in Emscripten or musl, return an error.
return EPERM;
}
int pthread_setcancelstate(int new, int* old) {
if (new > 1U)
return EINVAL;
struct pthread* self = pthread_self();
if (old)
*old = self->canceldisable;
self->canceldisable = new;
return 0;
}
int _pthread_isduecanceled(struct pthread* pthread_ptr) {
return pthread_ptr->threadStatus == 2 /*canceled*/;
}
void __pthread_testcancel() {
struct pthread* self = pthread_self();
if (self->canceldisable)
return;
if (_pthread_isduecanceled(self)) {
EM_ASM(throw 'Canceled!');
}
}
int pthread_getattr_np(pthread_t t, pthread_attr_t* a) {
*a = (pthread_attr_t){0};
a->_a_detach = !!t->detached;
a->_a_stackaddr = (uintptr_t)t->stack;
a->_a_stacksize = t->stack_size - DEFAULT_STACK_SIZE;
return 0;
}
static uint32_t dummyZeroAddress = 0;
void emscripten_thread_sleep(double msecs) {
double now = emscripten_get_now();
double target = now + msecs;
__pthread_testcancel(); // pthreads spec: sleep is a cancellation point, so must test if this
// thread is cancelled during the sleep.
emscripten_current_thread_process_queued_calls();
// If we have less than this many msecs left to wait, busy spin that instead.
const double minimumTimeSliceToSleep = 0.1;
// main thread may need to run proxied calls, so sleep in very small slices to be responsive.
const double maxMsecsSliceToSleep = emscripten_is_main_browser_thread() ? 1 : 100;
emscripten_conditional_set_current_thread_status(
EM_THREAD_STATUS_RUNNING, EM_THREAD_STATUS_SLEEPING);
now = emscripten_get_now();
while (now < target) {
// Keep processing the main loop of the calling thread.
__pthread_testcancel(); // pthreads spec: sleep is a cancellation point, so must test if this
// thread is cancelled during the sleep.
emscripten_current_thread_process_queued_calls();
now = emscripten_get_now();
double msecsToSleep = target - now;
if (msecsToSleep > maxMsecsSliceToSleep)
msecsToSleep = maxMsecsSliceToSleep;
if (msecsToSleep >= minimumTimeSliceToSleep)
emscripten_futex_wait(&dummyZeroAddress, 0, msecsToSleep);
now = emscripten_get_now();
};
emscripten_conditional_set_current_thread_status(
EM_THREAD_STATUS_SLEEPING, EM_THREAD_STATUS_RUNNING);
}
// Allocator and deallocator for em_queued_call objects.
static em_queued_call* em_queued_call_malloc() {
em_queued_call* call = (em_queued_call*)malloc(sizeof(em_queued_call));
assert(call); // Not a programming error, but use assert() in debug builds to catch OOM scenarios.
if (call) {
call->operationDone = 0;
call->functionPtr = 0;
call->satelliteData = 0;
}
return call;
}
static void em_queued_call_free(em_queued_call* call) {
if (call)
free(call->satelliteData);
free(call);
}
void emscripten_async_waitable_close(em_queued_call* call) {
assert(call->operationDone);
em_queued_call_free(call);
}
extern double emscripten_receive_on_main_thread_js(int functionIndex, int numCallArgs, double* args);
extern int _emscripten_notify_thread_queue(pthread_t targetThreadId, pthread_t mainThreadId);
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define HAS_ASAN
void __lsan_disable_in_this_thread(void);
void __lsan_enable_in_this_thread(void);
int emscripten_builtin_pthread_create(void *thread, void *attr,
void *(*callback)(void *), void *arg);
#endif
#endif
static void _do_call(em_queued_call* q) {
// C function pointer
assert(EM_FUNC_SIG_NUM_FUNC_ARGUMENTS(q->functionEnum) <= EM_QUEUED_CALL_MAX_ARGS);
switch (q->functionEnum) {
case EM_PROXIED_PTHREAD_CREATE:
#ifdef HAS_ASAN
// ASan wraps the emscripten_builtin_pthread_create call in __lsan::ScopedInterceptorDisabler.
// Unfortunately, that only disables it on the thread that made the call.
// This is sufficient on the main thread.
// On non-main threads, pthread_create gets proxied to the main thread, where LSan is not
// disabled. This makes it necessary for us to disable LSan here, so that it does not detect
// pthread's internal allocations as leaks.
__lsan_disable_in_this_thread();
q->returnValue.i =
emscripten_builtin_pthread_create(q->args[0].vp, q->args[1].vp, q->args[2].vp, q->args[3].vp);
__lsan_enable_in_this_thread();
#else
q->returnValue.i =
pthread_create(q->args[0].vp, q->args[1].vp, q->args[2].vp, q->args[3].vp);
#endif
break;
case EM_PROXIED_CREATE_CONTEXT:
q->returnValue.i = emscripten_webgl_create_context(q->args[0].cp, q->args[1].vp);
break;
case EM_PROXIED_RESIZE_OFFSCREENCANVAS:
q->returnValue.i =
emscripten_set_canvas_element_size(q->args[0].cp, q->args[1].i, q->args[2].i);
break;
case EM_PROXIED_JS_FUNCTION:
q->returnValue.d =
emscripten_receive_on_main_thread_js((int)q->functionPtr, q->args[0].i, &q->args[1].d);
break;
case EM_FUNC_SIG_V:
((em_func_v)q->functionPtr)();
break;
case EM_FUNC_SIG_VI:
((em_func_vi)q->functionPtr)(q->args[0].i);
break;
case EM_FUNC_SIG_VF:
((em_func_vf)q->functionPtr)(q->args[0].f);
break;
case EM_FUNC_SIG_VII:
((em_func_vii)q->functionPtr)(q->args[0].i, q->args[1].i);
break;
case EM_FUNC_SIG_VIF:
((em_func_vif)q->functionPtr)(q->args[0].i, q->args[1].f);
break;
case EM_FUNC_SIG_VFF:
((em_func_vff)q->functionPtr)(q->args[0].f, q->args[1].f);
break;
case EM_FUNC_SIG_VIII:
((em_func_viii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i);
break;
case EM_FUNC_SIG_VIIF:
((em_func_viif)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].f);
break;
case EM_FUNC_SIG_VIFF:
((em_func_viff)q->functionPtr)(q->args[0].i, q->args[1].f, q->args[2].f);
break;
case EM_FUNC_SIG_VFFF:
((em_func_vfff)q->functionPtr)(q->args[0].f, q->args[1].f, q->args[2].f);
break;
case EM_FUNC_SIG_VIIII:
((em_func_viiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i);
break;
case EM_FUNC_SIG_VIIFI:
((em_func_viifi)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].f, q->args[3].i);
break;
case EM_FUNC_SIG_VIFFF:
((em_func_vifff)q->functionPtr)(q->args[0].i, q->args[1].f, q->args[2].f, q->args[3].f);
break;
case EM_FUNC_SIG_VFFFF:
((em_func_vffff)q->functionPtr)(q->args[0].f, q->args[1].f, q->args[2].f, q->args[3].f);
break;
case EM_FUNC_SIG_VIIIII:
((em_func_viiiii)q->functionPtr)(
q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i, q->args[4].i);
break;
case EM_FUNC_SIG_VIFFFF:
((em_func_viffff)q->functionPtr)(
q->args[0].i, q->args[1].f, q->args[2].f, q->args[3].f, q->args[4].f);
break;
case EM_FUNC_SIG_VIIIIII:
((em_func_viiiiii)q->functionPtr)(
q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i, q->args[4].i, q->args[5].i);
break;
case EM_FUNC_SIG_VIIIIIII:
((em_func_viiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i,
q->args[4].i, q->args[5].i, q->args[6].i);
break;
case EM_FUNC_SIG_VIIIIIIII:
((em_func_viiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i,
q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i);
break;
case EM_FUNC_SIG_VIIIIIIIII:
((em_func_viiiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i,
q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i, q->args[8].i);
break;
case EM_FUNC_SIG_VIIIIIIIIII:
((em_func_viiiiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i,
q->args[3].i, q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i, q->args[8].i,
q->args[9].i);
break;
case EM_FUNC_SIG_VIIIIIIIIIII:
((em_func_viiiiiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i,
q->args[3].i, q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i, q->args[8].i,
q->args[9].i, q->args[10].i);
break;
case EM_FUNC_SIG_I:
q->returnValue.i = ((em_func_i)q->functionPtr)();
break;
case EM_FUNC_SIG_II:
q->returnValue.i = ((em_func_ii)q->functionPtr)(q->args[0].i);
break;
case EM_FUNC_SIG_III:
q->returnValue.i = ((em_func_iii)q->functionPtr)(q->args[0].i, q->args[1].i);
break;
case EM_FUNC_SIG_IIII:
q->returnValue.i = ((em_func_iiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i);
break;
case EM_FUNC_SIG_IIIII:
q->returnValue.i =
((em_func_iiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i);
break;
case EM_FUNC_SIG_IIIIII:
q->returnValue.i = ((em_func_iiiiii)q->functionPtr)(
q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i, q->args[4].i);
break;
case EM_FUNC_SIG_IIIIIII:
q->returnValue.i = ((em_func_iiiiiii)q->functionPtr)(
q->args[0].i, q->args[1].i, q->args[2].i, q->args[3].i, q->args[4].i, q->args[5].i);
break;
case EM_FUNC_SIG_IIIIIIII:
q->returnValue.i = ((em_func_iiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i,
q->args[2].i, q->args[3].i, q->args[4].i, q->args[5].i, q->args[6].i);
break;
case EM_FUNC_SIG_IIIIIIIII:
q->returnValue.i = ((em_func_iiiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i,
q->args[2].i, q->args[3].i, q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i);
break;
case EM_FUNC_SIG_IIIIIIIIII:
q->returnValue.i =
((em_func_iiiiiiiiii)q->functionPtr)(q->args[0].i, q->args[1].i, q->args[2].i,
q->args[3].i, q->args[4].i, q->args[5].i, q->args[6].i, q->args[7].i, q->args[8].i);
break;
default:
assert(0 && "Invalid Emscripten pthread _do_call opcode!");
}
// If the caller is detached from this operation, it is the main thread's responsibility to free
// up the call object.
if (q->calleeDelete) {
em_queued_call_free(q);
// No need to wake a listener, nothing is listening to this since the call object is detached.
} else {
// The caller owns this call object, it is listening to it and will free it up.
q->operationDone = 1;
emscripten_futex_wake(&q->operationDone, INT_MAX);
}
}
#define CALL_QUEUE_SIZE 128
typedef struct CallQueue {
void* target_thread;
em_queued_call** call_queue;
int call_queue_head; // Shared data synchronized by call_queue_lock.
int call_queue_tail;
struct CallQueue* next;
} CallQueue;
// Currently global to the queue, but this can be improved to be per-queue specific. (TODO: with
// lockfree list operations on callQueue_head, or removing the list by moving this data to
// pthread_t)
static pthread_mutex_t call_queue_lock = PTHREAD_MUTEX_INITIALIZER;
static CallQueue* callQueue_head = 0;
static CallQueue* GetQueue(
void* target) // Not thread safe, call while having call_queue_lock obtained.
{
assert(target);
CallQueue* q = callQueue_head;
while (q && q->target_thread != target)
q = q->next;
return q;
}
static CallQueue* GetOrAllocateQueue(
void* target) // Not thread safe, call while having call_queue_lock obtained.
{
CallQueue* q = GetQueue(target);
if (q)
return q;
q = (CallQueue*)malloc(sizeof(CallQueue));
q->target_thread = target;
q->call_queue = 0;
q->call_queue_head = 0;
q->call_queue_tail = 0;
q->next = 0;
if (callQueue_head) {
CallQueue* last = callQueue_head;
while (last->next)
last = last->next;
last->next = q;
} else {
callQueue_head = q;
}
return q;
}
EMSCRIPTEN_RESULT emscripten_wait_for_call_v(em_queued_call* call, double timeoutMSecs) {
int r;
int done = emscripten_atomic_load_u32(&call->operationDone);
if (!done) {
double now = emscripten_get_now();
double waitEndTime = now + timeoutMSecs;
emscripten_set_current_thread_status(EM_THREAD_STATUS_WAITPROXY);
while (!done && now < waitEndTime) {
r = emscripten_futex_wait(&call->operationDone, 0, waitEndTime - now);
done = emscripten_atomic_load_u32(&call->operationDone);
now = emscripten_get_now();
}
emscripten_set_current_thread_status(EM_THREAD_STATUS_RUNNING);
}
if (done)
return EMSCRIPTEN_RESULT_SUCCESS;
else
return EMSCRIPTEN_RESULT_TIMED_OUT;
}
EMSCRIPTEN_RESULT emscripten_wait_for_call_i(
em_queued_call* call, double timeoutMSecs, int* outResult) {
EMSCRIPTEN_RESULT res = emscripten_wait_for_call_v(call, timeoutMSecs);
if (res == EMSCRIPTEN_RESULT_SUCCESS && outResult)
*outResult = call->returnValue.i;
return res;
}
static pthread_t main_browser_thread_id_ = 0;
void emscripten_register_main_browser_thread_id(
pthread_t main_browser_thread_id) {
main_browser_thread_id_ = main_browser_thread_id;
}
pthread_t emscripten_main_browser_thread_id() {
return main_browser_thread_id_;
}
int _emscripten_do_dispatch_to_thread(
pthread_t target_thread, em_queued_call* call) {
assert(call);
// #if PTHREADS_DEBUG // TODO: Create a debug version of pthreads library
// EM_ASM_INT({dump('thread ' + _pthread_self() + ' (ENVIRONMENT_IS_WORKER: ' +
//ENVIRONMENT_IS_WORKER + '), queueing call of function enum=' + $0 + '/ptr=' + $1 + ' on thread '
//+ $2 + '\n' + new Error().stack)}, call->functionEnum, call->functionPtr, target_thread);
// #endif
// Can't be a null pointer here, but can't be EM_CALLBACK_THREAD_CONTEXT_MAIN_BROWSER_THREAD
// either.
assert(target_thread);
if (target_thread == EM_CALLBACK_THREAD_CONTEXT_MAIN_BROWSER_THREAD)
target_thread = emscripten_main_browser_thread_id();
// If we are the target recipient of this message, we can just call the operation directly.
if (target_thread == EM_CALLBACK_THREAD_CONTEXT_CALLING_THREAD ||
target_thread == pthread_self()) {
_do_call(call);
return 1;
}
// Add the operation to the call queue of the main runtime thread.
pthread_mutex_lock(&call_queue_lock);
CallQueue* q = GetOrAllocateQueue(target_thread);
if (!q->call_queue)
q->call_queue = malloc(
sizeof(em_queued_call*) * CALL_QUEUE_SIZE); // Shared data synchronized by call_queue_lock.
int head = emscripten_atomic_load_u32((void*)&q->call_queue_head);
int tail = emscripten_atomic_load_u32((void*)&q->call_queue_tail);
int new_tail = (tail + 1) % CALL_QUEUE_SIZE;
while (new_tail == head) { // Queue is full?
pthread_mutex_unlock(&call_queue_lock);
// If queue of the main browser thread is full, then we wait. (never drop messages for the main
// browser thread)
if (target_thread == emscripten_main_browser_thread_id()) {
emscripten_futex_wait((void*)&q->call_queue_head, head, INFINITY);
pthread_mutex_lock(&call_queue_lock);
head = emscripten_atomic_load_u32((void*)&q->call_queue_head);
tail = emscripten_atomic_load_u32((void*)&q->call_queue_tail);
new_tail = (tail + 1) % CALL_QUEUE_SIZE;
} else {
// For the queues of other threads, just drop the message.
// #if DEBUG TODO: a debug build of pthreads library?
// EM_ASM(console.error('Pthread queue overflowed, dropping queued
//message to thread. ' + new Error().stack));
// #endif
em_queued_call_free(call);
return 0;
}
}
q->call_queue[tail] = call;
// If the call queue was empty, the main runtime thread is likely idle in the browser event loop,
// so send a message to it to ensure that it wakes up to start processing the command we have
// posted.
if (head == tail) {
int success = _emscripten_notify_thread_queue(target_thread, emscripten_main_browser_thread_id());
// Failed to dispatch the thread, delete the crafted message.
if (!success) {
em_queued_call_free(call);
pthread_mutex_unlock(&call_queue_lock);
return 0;
}
}
emscripten_atomic_store_u32((void*)&q->call_queue_tail, new_tail);
pthread_mutex_unlock(&call_queue_lock);
return 0;
}
void emscripten_async_run_in_main_thread(em_queued_call* call) {
_emscripten_do_dispatch_to_thread(emscripten_main_browser_thread_id(), call);
}
void emscripten_sync_run_in_main_thread(em_queued_call* call) {
emscripten_async_run_in_main_thread(call);
// Enter to wait for the operation to complete.
emscripten_wait_for_call_v(call, INFINITY);
}
void* emscripten_sync_run_in_main_thread_0(int function) {
em_queued_call q = {function};
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_1(int function, void* arg1) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_2(
int function, void* arg1, void* arg2) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_xprintf_varargs(
int function, int param0, const char* format, ...) {
va_list args;
va_start(args, format);
const int CAP = 128;
char str[CAP];
char* s = str;
int len = vsnprintf(s, CAP, format, args);
if (len >= CAP) {
s = (char*)malloc(len + 1);
va_start(args, format);
len = vsnprintf(s, len + 1, format, args);
}
em_queued_call q = {function};
q.args[0].vp = (void*)param0;
q.args[1].vp = s;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
if (s != str)
free(s);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_3(
int function, void* arg1, void* arg2, void* arg3) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.args[2].vp = arg3;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_4(
int function, void* arg1, void* arg2, void* arg3, void* arg4) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.args[2].vp = arg3;
q.args[3].vp = arg4;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_5(
int function, void* arg1, void* arg2, void* arg3, void* arg4, void* arg5) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.args[2].vp = arg3;
q.args[3].vp = arg4;
q.args[4].vp = arg5;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_6(
int function, void* arg1, void* arg2, void* arg3, void* arg4, void* arg5, void* arg6) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.args[2].vp = arg3;
q.args[3].vp = arg4;
q.args[4].vp = arg5;
q.args[5].vp = arg6;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void* emscripten_sync_run_in_main_thread_7(int function, void* arg1,
void* arg2, void* arg3, void* arg4, void* arg5, void* arg6, void* arg7) {
em_queued_call q = {function};
q.args[0].vp = arg1;
q.args[1].vp = arg2;
q.args[2].vp = arg3;
q.args[3].vp = arg4;
q.args[4].vp = arg5;
q.args[5].vp = arg6;
q.args[6].vp = arg7;
q.returnValue.vp = 0;
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.vp;
}
void emscripten_current_thread_process_queued_calls() {
// #if PTHREADS_DEBUG == 2
// EM_ASM(console.error('thread ' + _pthread_self() + ':
//emscripten_current_thread_process_queued_calls(), ' + new Error().stack));
// #endif
// TODO: Under certain conditions we may want to have a nesting guard also for pthreads (and it
// will certainly be cleaner that way), but we don't yet have TLS variables outside
// pthread_set/getspecific, so convert this to TLS after TLS is implemented.
static int bool_main_thread_inside_nested_process_queued_calls = 0;
if (emscripten_is_main_browser_thread()) {
// It is possible that when processing a queued call, the call flow leads back to calling this
// function in a nested fashion! Therefore this scenario must explicitly be detected, and
// processing the queue must be avoided if we are nesting, or otherwise the same queued calls
// would be processed again and again.
if (bool_main_thread_inside_nested_process_queued_calls)
return;
// This must be before pthread_mutex_lock(), since pthread_mutex_lock() can call back to this
// function.
bool_main_thread_inside_nested_process_queued_calls = 1;
}
pthread_mutex_lock(&call_queue_lock);
CallQueue* q = GetQueue(pthread_self());
if (!q) {
pthread_mutex_unlock(&call_queue_lock);
if (emscripten_is_main_browser_thread())
bool_main_thread_inside_nested_process_queued_calls = 0;
return;
}
int head = emscripten_atomic_load_u32((void*)&q->call_queue_head);
int tail = emscripten_atomic_load_u32((void*)&q->call_queue_tail);
while (head != tail) {
// Assume that the call is heavy, so unlock access to the call queue while it is being
// performed.
pthread_mutex_unlock(&call_queue_lock);
_do_call(q->call_queue[head]);
pthread_mutex_lock(&call_queue_lock);
head = (head + 1) % CALL_QUEUE_SIZE;
emscripten_atomic_store_u32((void*)&q->call_queue_head, head);
tail = emscripten_atomic_load_u32((void*)&q->call_queue_tail);
}
pthread_mutex_unlock(&call_queue_lock);
// If the queue was full and we had waiters pending to get to put data to queue, wake them up.
emscripten_futex_wake((void*)&q->call_queue_head, 0x7FFFFFFF);
if (emscripten_is_main_browser_thread())
bool_main_thread_inside_nested_process_queued_calls = 0;
}
void emscripten_main_thread_process_queued_calls() {
if (!emscripten_is_main_runtime_thread())
return;
emscripten_current_thread_process_queued_calls();
}
int emscripten_sync_run_in_main_runtime_thread_(EM_FUNC_SIGNATURE sig, void* func_ptr, ...) {
int numArguments = EM_FUNC_SIG_NUM_FUNC_ARGUMENTS(sig);
em_queued_call q = {sig, func_ptr};
EM_FUNC_SIGNATURE argumentsType = sig & EM_FUNC_SIG_ARGUMENTS_TYPE_MASK;
va_list args;
va_start(args, func_ptr);
for (int i = 0; i < numArguments; ++i) {
switch ((argumentsType & EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_MASK)) {
case EM_FUNC_SIG_PARAM_I:
q.args[i].i = va_arg(args, int);
break;
case EM_FUNC_SIG_PARAM_I64:
q.args[i].i64 = va_arg(args, int64_t);
break;
case EM_FUNC_SIG_PARAM_F:
q.args[i].f = (float)va_arg(args, double);
break;
case EM_FUNC_SIG_PARAM_D:
q.args[i].d = va_arg(args, double);
break;
}
argumentsType >>= EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_SHIFT;
}
va_end(args);
emscripten_sync_run_in_main_thread(&q);
return q.returnValue.i;
}
double emscripten_run_in_main_runtime_thread_js(int index, int num_args, int64_t* buffer, int sync) {
em_queued_call q;
em_queued_call *c;
if (sync) {
q.operationDone = 0;
q.satelliteData = 0;
c = &q;
} else {
c = em_queued_call_malloc();
}
c->calleeDelete = 1-sync;
c->functionEnum = EM_PROXIED_JS_FUNCTION;
c->functionPtr = (void*)index;
assert(num_args+1 <= EM_QUEUED_JS_CALL_MAX_ARGS);
// The types are only known at runtime in these calls, so we store values that
// must be able to contain any valid JS value, including a 64-bit BigInt if
// BigInt support is enabled. We store to an i64, which can contain both a
// BigInt and a JS Number which is a 64-bit double.
c->args[0].i = num_args;
for (int i = 0; i < num_args; i++) {
c->args[i+1].i64 = buffer[i];
}
if (sync) {
emscripten_sync_run_in_main_thread(&q);
// TODO: support BigInt return values somehow.
return q.returnValue.d;
} else {
// 'async' runs are fire and forget, where the caller detaches itself from the call object after
// returning here, and it is the callee's responsibility to free up the memory after the call
// has been performed.
emscripten_async_run_in_main_thread(c);
return 0;
}
}
void emscripten_async_run_in_main_runtime_thread_(EM_FUNC_SIGNATURE sig, void* func_ptr, ...) {
int numArguments = EM_FUNC_SIG_NUM_FUNC_ARGUMENTS(sig);
em_queued_call* q = em_queued_call_malloc();
if (!q)
return;
q->functionEnum = sig;
q->functionPtr = func_ptr;
EM_FUNC_SIGNATURE argumentsType = sig & EM_FUNC_SIG_ARGUMENTS_TYPE_MASK;
va_list args;
va_start(args, func_ptr);
for (int i = 0; i < numArguments; ++i) {
switch ((argumentsType & EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_MASK)) {
case EM_FUNC_SIG_PARAM_I:
q->args[i].i = va_arg(args, int);
break;
case EM_FUNC_SIG_PARAM_I64:
q->args[i].i64 = va_arg(args, int64_t);
break;
case EM_FUNC_SIG_PARAM_F:
q->args[i].f = (float)va_arg(args, double);
break;
case EM_FUNC_SIG_PARAM_D:
q->args[i].d = va_arg(args, double);
break;
}
argumentsType >>= EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_SHIFT;
}
va_end(args);
// 'async' runs are fire and forget, where the caller detaches itself from the call object after
// returning here, and it is the callee's responsibility to free up the memory after the call has
// been performed.
q->calleeDelete = 1;
emscripten_async_run_in_main_thread(q);
}
em_queued_call* emscripten_async_waitable_run_in_main_runtime_thread_(
EM_FUNC_SIGNATURE sig, void* func_ptr, ...) {
int numArguments = EM_FUNC_SIG_NUM_FUNC_ARGUMENTS(sig);
em_queued_call* q = em_queued_call_malloc();
if (!q)
return NULL;
q->functionEnum = sig;
q->functionPtr = func_ptr;
EM_FUNC_SIGNATURE argumentsType = sig & EM_FUNC_SIG_ARGUMENTS_TYPE_MASK;
va_list args;
va_start(args, func_ptr);
for (int i = 0; i < numArguments; ++i) {
switch ((argumentsType & EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_MASK)) {
case EM_FUNC_SIG_PARAM_I:
q->args[i].i = va_arg(args, int);
break;
case EM_FUNC_SIG_PARAM_I64:
q->args[i].i64 = va_arg(args, int64_t);
break;
case EM_FUNC_SIG_PARAM_F:
q->args[i].f = (float)va_arg(args, double);
break;
case EM_FUNC_SIG_PARAM_D:
q->args[i].d = va_arg(args, double);
break;
}
argumentsType >>= EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_SHIFT;
}
va_end(args);
// 'async waitable' runs are waited on by the caller, so the call object needs to remain alive for
// the caller to access it after the operation is done. The caller is responsible in cleaning up
// the object after done.
q->calleeDelete = 0;
emscripten_async_run_in_main_thread(q);
return q;
}
int _emscripten_call_on_thread(
int forceAsync,
pthread_t targetThread, EM_FUNC_SIGNATURE sig, void* func_ptr, void* satellite, ...) {
int numArguments = EM_FUNC_SIG_NUM_FUNC_ARGUMENTS(sig);
em_queued_call* q = em_queued_call_malloc();
assert(q);
// TODO: handle errors in a better way, this pattern appears in several places
// in this file. The current behavior makes the calling thread hang as
// it waits (for synchronous calls).
// If we failed to allocate, return 0 which means we did not execute anything
// (we also never will in that case).
if (!q)
return 0;
q->functionEnum = sig;
q->functionPtr = func_ptr;
q->satelliteData = satellite;
EM_FUNC_SIGNATURE argumentsType = sig & EM_FUNC_SIG_ARGUMENTS_TYPE_MASK;
va_list args;
va_start(args, satellite);
for (int i = 0; i < numArguments; ++i) {
switch ((argumentsType & EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_MASK)) {
case EM_FUNC_SIG_PARAM_I:
q->args[i].i = va_arg(args, int);
break;
case EM_FUNC_SIG_PARAM_I64:
q->args[i].i64 = va_arg(args, int64_t);
break;
case EM_FUNC_SIG_PARAM_F:
q->args[i].f = (float)va_arg(args, double);
break;
case EM_FUNC_SIG_PARAM_D:
q->args[i].d = va_arg(args, double);
break;
}
argumentsType >>= EM_FUNC_SIG_ARGUMENT_TYPE_SIZE_SHIFT;
}
va_end(args);
// 'async' runs are fire and forget, where the caller detaches itself from the call object after
// returning here, and it is the callee's responsibility to free up the memory after the call has
// been performed.
// Note that the call here might not be async if on the same thread, but for
// consistency use the same convention of calleeDelete.
q->calleeDelete = 1;
// The called function will not be async if we are on the same thread; force
// async if the user asked for that.
if (forceAsync) {
EM_ASM({
setTimeout(function() {
__emscripten_do_dispatch_to_thread($0, $1);
}, 0);
}, targetThread, q);
return 0;
} else {
return _emscripten_do_dispatch_to_thread(targetThread, q);
}
}
void llvm_memory_barrier() { emscripten_atomic_fence(); }
int llvm_atomic_load_add_i32_p0i32(int* ptr, int delta) {
return emscripten_atomic_add_u32(ptr, delta);
}
// Stores the memory address that the main thread is waiting on, if any. If
// the main thread is waiting, we wake it up before waking up any workers.
EMSCRIPTEN_KEEPALIVE void* _emscripten_main_thread_futex;
static int _main_argc;
static char** _main_argv;
extern int __call_main(int argc, char** argv);
static void* _main_thread(void* param) {
// This is the main runtime thread for the application.
emscripten_set_thread_name(pthread_self(), "Application main thread");
return (void*)__call_main(_main_argc, _main_argv);
}
int emscripten_proxy_main(int argc, char** argv) {
pthread_attr_t attr;
pthread_attr_init(&attr);
// Use the size of the current stack, which is the normal size of the stack
// that main() would have without PROXY_TO_PTHREAD.
pthread_attr_setstacksize(&attr, emscripten_stack_get_base() - emscripten_stack_get_end());
// Pass special ID -1 to the list of transferred canvases to denote that the thread creation
// should instead take a list of canvases that are specified from the command line with
// -s OFFSCREENCANVASES_TO_PTHREAD linker flag.
emscripten_pthread_attr_settransferredcanvases(&attr, (const char*)-1);
_main_argc = argc;
_main_argv = argv;
pthread_t thread;
int rc = pthread_create(&thread, &attr, _main_thread, NULL);
pthread_attr_destroy(&attr);
return rc;
}
weak_alias(__pthread_testcancel, pthread_testcancel);
|