1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// Copyright 2018 The Emscripten Authors. All rights reserved.
// Emscripten is available under two separate licenses, the MIT license and the
// University of Illinois/NCSA Open Source License. Both these licenses can be
// found in the LICENSE file.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <emscripten.h>
#ifndef RANDOM_ITERS
#define RANDOM_ITERS 12345
#endif
extern "C" void emmalloc_blank_slate_from_orbit();
void stage(const char* name) {
EM_ASM({
out('\n>> ' + UTF8ToString($0) + '\n');
}, name);
}
void basics() {
stage("basics");
stage("allocate 0");
void* ptr = malloc(0);
assert(ptr != 0);
free(ptr);
stage("allocate 100");
void* first = malloc(100);
stage("free 100");
free(first);
stage("allocate another 100");
void* second = malloc(100);
stage("allocate 10");
assert(second == first);
void* third = malloc(10);
assert(!emmalloc_validate_memory_regions());
stage("allocate 10 more");
void* four = malloc(10);
assert(!emmalloc_validate_memory_regions());
stage("free the first");
free(second);
stage("free all");
free(third);
free(four);
assert(!emmalloc_validate_memory_regions());
}
void previous_sbrk() {
stage("previous_sbrk");
emmalloc_blank_slate_from_orbit();
void* old = sbrk(0);
assert((size_t)old % 4 == 0);
sbrk(3); // unalign things
void* other = malloc(10);
free(other);
assert(other != old);
}
void test_calloc() {
stage("calloc");
emmalloc_blank_slate_from_orbit();
char* ptr = (char*)malloc(10);
ptr[0] = 77;
free(ptr);
char* cptr = (char*)calloc(10, 1);
assert(cptr == ptr);
assert(ptr[0] == 0);
}
void test_realloc() {
stage("realloc0");
emmalloc_blank_slate_from_orbit();
for (int i = 0; i < 2; i++) {
char* ptr = (char*)malloc(100);
stage("realloc0.1");
char* raptr = (char*)realloc(ptr, 1);
assert(raptr == ptr);
stage("realloc0.2");
char* raptr2 = (char*)realloc(raptr, 100);
assert(raptr2 == ptr);
char* last = (char*)malloc(1);
assert(last >= ptr + 100);
// slightly more still fits
stage("realloc0.3");
char* raptr3 = (char*)realloc(raptr2, 11);
assert(raptr3 == ptr);
// finally, realloc a size we must reallocate for
stage("realloc0.4");
char* raptr4 = (char*)realloc(raptr3, 1000);
assert(raptr4);
assert(raptr4 != ptr);
// leaving those in place, do another iteration
}
stage("realloc1");
emmalloc_blank_slate_from_orbit();
// realloc of NULL is like malloc
assert(realloc(NULL, 10) != 0);
stage("realloc2");
emmalloc_blank_slate_from_orbit();
{
// realloc to 0 is like free
void* ptr = malloc(10);
assert(realloc(ptr, 0) == NULL);
}
stage("realloc3");
emmalloc_blank_slate_from_orbit();
{
// realloc copies
char* ptr = (char*)malloc(10);
*ptr = 123;
for (int i = 5; i <= 16; i++) {
char* temp = (char*)realloc(ptr, i);
assert(*temp == 123);
assert(temp == ptr);
}
stage("realloc3.5");
malloc(1);
malloc(100);
{
char* temp = (char*)realloc(ptr, 17);
assert(*temp == 123);
assert(temp != ptr);
ptr = temp;
}
}
}
void check_aligned(size_t align, size_t ptr) {
if (align != 0 && ((align & (align - 1)) != 0)) {
assert(ptr == 0);
} else {
assert(ptr);
assert(align == 0 || ptr % align == 0);
}
}
void aligned() {
stage("aligned");
for (int i = 0; i < 35; i++) {
for (int j = 0; j < 35; j++) {
emmalloc_blank_slate_from_orbit();
size_t first = (size_t)memalign(i, 100);
size_t second = (size_t)memalign(j, 100);
printf("%d %d => %d %d\n", i, j, first, second);
check_aligned(i, first);
check_aligned(j, second);
}
}
}
void randoms() {
stage("randoms");
emmalloc_blank_slate_from_orbit();
void* start = malloc(10);
const int N = 1000;
const int BINS = 128;
void* bins[BINS];
char values[BINS];
for (int i = 0; i < BINS; i++) {
bins[i] = NULL;
}
srandom(1337101);
for (int i = 0; i < RANDOM_ITERS; i++) {
unsigned int r = random();
int alloc = r & 1;
r >>= 1;
int calloc_ = r & 1;
r >>= 1;
int bin = r & 127;
r >>= 7;
unsigned int size = r & 65535;
r >>= 16;
int useShifts = r & 1;
r >>= 1;
unsigned int shifts = r & 15;
r >>= 4;
if (size == 0) size = 1;
if (useShifts) {
size >>= shifts; // spread out values logarithmically
}
if (alloc || !bins[bin]) {
if (bins[bin]) {
char value = values[bin];
assert(*(char*)(bins[bin]) == value /* one */);
bins[bin] = realloc(bins[bin], size);
if (bins[bin]) {
assert(*(char*)(bins[bin]) == value /* two */);
}
} else {
if (calloc_) {
bins[bin] = malloc(size);
} else {
bins[bin] = calloc(size, 1);
}
values[bin] = random();
if (bins[bin]) {
*(char*)(bins[bin]) = values[bin];
assert(*(char*)(bins[bin]) == values[bin] /* three */);
}
}
} else {
free(bins[bin]);
bins[bin] = NULL;
}
}
for (int i = 0; i < BINS; i++) {
if (bins[i]) free(bins[i]);
}
assert(!emmalloc_validate_memory_regions());
}
int main() {
stage("beginning");
basics();
previous_sbrk();
test_calloc();
test_realloc();
aligned();
randoms();
stage("the_end");
}
|