1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
#include "coremark.h"
/*
Topic: Description
Matrix manipulation benchmark
This very simple algorithm forms the basis of many more complex algorithms.
The tight inner loop is the focus of many optimizations (compiler as well as hardware based)
and is thus relevant for embedded processing.
The total available data space will be divided to 3 parts:
NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero).
NxN Matrix B - initialized with medium values (upper half of the bits all zero).
NxN Matrix C - used for the result.
The actual values for A and B must be derived based on input that is not available at compile time.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
#define matrix_test_next(x) (x+1)
#define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff)
#define matrix_big(x) (0xf000 | (x))
#define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to))))
#if CORE_DEBUG
void printmat(MATDAT *A, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",A[i*N+j]);
}
ee_printf("\n");
}
}
void printmatC(MATRES *C, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",C[i*N+j]);
}
ee_printf("\n");
}
}
#endif
/* Function: core_bench_matrix
Benchmark function
Iterate <matrix_test> N times,
changing the matrix values slightly by a constant amount each time.
*/
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) {
ee_u32 N=p->N;
MATRES *C=p->C;
MATDAT *A=p->A;
MATDAT *B=p->B;
MATDAT val=(MATDAT)seed;
crc=crc16(matrix_test(N,C,A,B,val),crc);
return crc;
}
/* Function: matrix_test
Perform matrix manipulation.
Parameters:
N - Dimensions of the matrix.
C - memory for result matrix.
A - input matrix
B - operator matrix (not changed during operations)
Returns:
A CRC value that captures all results calculated in the function.
In particular, crc of the value calculated on the result matrix
after each step by <matrix_sum>.
Operation:
1 - Add a constant value to all elements of a matrix.
2 - Multiply a matrix by a constant.
3 - Multiply a matrix by a vector.
4 - Multiply a matrix by a matrix.
5 - Add a constant value to all elements of a matrix.
After the last step, matrix A is back to original contents.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) {
ee_u16 crc=0;
MATDAT clipval=matrix_big(val);
matrix_add_const(N,A,val); /* make sure data changes */
#if CORE_DEBUG
printmat(A,N,"matrix_add_const");
#endif
matrix_mul_const(N,C,A,val);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_const");
#endif
matrix_mul_vect(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_vect");
#endif
matrix_mul_matrix(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix");
#endif
matrix_mul_matrix_bitextract(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix_bitextract");
#endif
matrix_add_const(N,A,-val); /* return matrix to initial value */
return crc;
}
/* Function : matrix_init
Initialize the memory block for matrix benchmarking.
Parameters:
blksize - Size of memory to be initialized.
memblk - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
p - pointers to <mat_params> containing initialized matrixes.
Returns:
Matrix dimensions.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
*/
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) {
ee_u32 N=0;
MATDAT *A;
MATDAT *B;
ee_s32 order=1;
MATDAT val;
ee_u32 i=0,j=0;
if (seed==0)
seed=1;
while (j<blksize) {
i++;
j=i*i*2*4;
}
N=i-1;
A=(MATDAT *)align_mem(memblk);
B=A+N*N;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
seed = ( ( order * seed ) % 65536 );
val = (seed + order);
val=matrix_clip(val,0);
B[i*N+j] = val;
val = (val + order);
val=matrix_clip(val,1);
A[i*N+j] = val;
order++;
}
}
p->A=A;
p->B=B;
p->C=(MATRES *)align_mem(B+N*N);
p->N=N;
#if CORE_DEBUG
printmat(A,N,"A");
printmat(B,N,"B");
#endif
return N;
}
/* Function: matrix_sum
Calculate a function that depends on the values of elements in the matrix.
For each element, accumulate into a temporary variable.
As long as this value is under the parameter clipval,
add 1 to the result if the element is bigger then the previous.
Otherwise, reset the accumulator and add 10 to the result.
*/
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) {
MATRES tmp=0,prev=0,cur=0;
ee_s16 ret=0;
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
cur=C[i*N+j];
tmp+=cur;
if (tmp>clipval) {
ret+=10;
tmp=0;
} else {
ret += (cur>prev) ? 1 : 0;
}
prev=cur;
}
}
return ret;
}
/* Function: matrix_mul_const
Multiply a matrix by a constant.
This could be used as a scaler for instance.
*/
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=(MATRES)A[i*N+j] * (MATRES)val;
}
}
}
/* Function: matrix_add_const
Add a constant value to all elements of a matrix.
*/
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
A[i*N+j] += val;
}
}
}
/* Function: matrix_mul_vect
Multiply a matrix by a vector.
This is common in many simple filters (e.g. fir where a vector of coefficients is applied to the matrix.)
*/
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j;
for (i=0; i<N; i++) {
C[i]=0;
for (j=0; j<N; j++) {
C[i]+=(MATRES)A[i*N+j] * (MATRES)B[j];
}
}
}
/* Function: matrix_mul_matrix
Multiply a matrix by a matrix.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
C[i*N+j]+=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
}
}
}
}
/* Function: matrix_mul_matrix_bitextract
Multiply a matrix by a matrix, and extract some bits from the result.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
MATRES tmp=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
C[i*N+j]+=bit_extract(tmp,2,4)*bit_extract(tmp,5,7);
}
}
}
}
|