File: em_task_queue.c

package info (click to toggle)
emscripten 3.1.69%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 121,860 kB
  • sloc: ansic: 636,110; cpp: 425,974; javascript: 78,401; python: 58,404; sh: 49,154; pascal: 5,237; makefile: 3,366; asm: 2,415; lisp: 1,869
file content (259 lines) | stat: -rw-r--r-- 9,932 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * Copyright 2021 The Emscripten Authors.  All rights reserved.
 * Emscripten is available under two separate licenses, the MIT license and the
 * University of Illinois/NCSA Open Source License.  Both these licenses can be
 * found in the LICENSE file.
 */

#include <assert.h>
#include <emscripten/threading.h>
#include <stdatomic.h>
#include <stdlib.h>
#include <string.h>

#include "em_task_queue.h"
#include "proxying_notification_state.h"
#include "thread_mailbox.h"

#define EM_TASK_QUEUE_INITIAL_CAPACITY 128

// Task Queue Lifetime Management
// -------------------------------
//
// When tasks are added to a task queue, the Worker running the target thread
// receives an event that will cause it to execute the queue when it next
// returns to its event loop. In some cases the queue will already have been
// executed before then, but the event is still received and the queue is still
// executed. These events contain references to the queue so that the target
// thread will know which queue to execute.
//
// To avoid use-after-free bugs, we cannot free a task queue immediately when
// `em_task_queue_destroy` is called; instead, we must defer freeing the queue
// until all of its outstanding notifications have been processed. We defer
// freeing the queue using an atomic flag. Each time a notification containing a
// reference to a task queue is generated, we set the flag on that task queue.
// Each time that task queue is processed, we clear the flag as long as another
// notification for the queue has not been generated in the mean time. The
// proxying queue can only be freed once `em_task_queue_destroy` has been called
// and its notification flag has been cleared.
//
// But an extra complication is that the target thread may have died by the time
// it gets back to its event loop to process its notifications. In that case the
// thread's Worker will still receive a notification and have to clear the
// notification flag without a live runtime. Without a live runtime, there is no
// stack, so the worker cannot safely free the queue at this point even if the
// notification flag is cleared. We need a separate thread with a live runtime
// to perform the free.
//
// To ensure that queues are eventually freed, we place destroyed queues in a
// global "zombie list" where they wait for their notification flags to be
// cleared. The zombie list is scanned and zombie queues without outstanding
// notifications are freed whenever a new queue is constructed. In principle the
// zombie list could be scanned at any time, but the queue constructor is a nice
// place to do it because scanning there is sufficient to keep the number of
// zombie queues from growing without bound; creating a new zombie ultimately
// requires creating a new queue.
//
// -------------------------------

// The head of the zombie list. Its mutex protects access to the list and its
// other fields are not used.
static em_task_queue zombie_list_head = {.mutex = PTHREAD_MUTEX_INITIALIZER,
                                         .zombie_prev = &zombie_list_head,
                                         .zombie_next = &zombie_list_head};

static void em_task_queue_free(em_task_queue* queue) {
  pthread_mutex_destroy(&queue->mutex);
  free(queue->tasks);
  free(queue);
}

static void cull_zombies() {
  if (pthread_mutex_trylock(&zombie_list_head.mutex) != 0) {
    // Some other thread is already culling. In principle there may be new
    // cullable zombies after it finishes, but it's not worth waiting to find
    // out.
    return;
  }
  em_task_queue* curr = zombie_list_head.zombie_next;
  while (curr != &zombie_list_head) {
    em_task_queue* next = curr->zombie_next;
    if (curr->notification == NOTIFICATION_NONE) {
      // Remove the zombie from the list and free it.
      curr->zombie_prev->zombie_next = curr->zombie_next;
      curr->zombie_next->zombie_prev = curr->zombie_prev;
      em_task_queue_free(curr);
    }
    curr = next;
  }
  pthread_mutex_unlock(&zombie_list_head.mutex);
}

em_task_queue* em_task_queue_create(pthread_t thread) {
  // Free any queue that has been destroyed and is safe to free.
  cull_zombies();

  em_task_queue* queue = malloc(sizeof(em_task_queue));
  if (queue == NULL) {
    return NULL;
  }
  task* tasks = malloc(sizeof(task) * EM_TASK_QUEUE_INITIAL_CAPACITY);
  if (tasks == NULL) {
    free(queue);
    return NULL;
  }
  *queue = (em_task_queue){.notification = NOTIFICATION_NONE,
                           .mutex = PTHREAD_MUTEX_INITIALIZER,
                           .thread = thread,
                           .processing = 0,
                           .tasks = tasks,
                           .capacity = EM_TASK_QUEUE_INITIAL_CAPACITY,
                           .head = 0,
                           .tail = 0,
                           .zombie_prev = NULL,
                           .zombie_next = NULL};
  return queue;
}

void em_task_queue_destroy(em_task_queue* queue) {
  assert(queue->zombie_next == NULL && queue->zombie_prev == NULL);
  if (queue->notification == NOTIFICATION_NONE) {
    // No outstanding references to the queue, so we can go ahead and free it.
    em_task_queue_free(queue);
    return;
  }
  // Otherwise add the queue to the zombie list so that it will eventually be
  // freed safely.
  pthread_mutex_lock(&zombie_list_head.mutex);
  queue->zombie_next = &zombie_list_head;
  queue->zombie_prev = zombie_list_head.zombie_prev;
  queue->zombie_next->zombie_prev = queue;
  queue->zombie_prev->zombie_next = queue;
  pthread_mutex_unlock(&zombie_list_head.mutex);
}

// Not thread safe. Returns 1 on success and 0 on failure.
static int em_task_queue_grow(em_task_queue* queue) {
  // Allocate a larger task queue.
  int new_capacity = queue->capacity * 2;
  task* new_tasks = malloc(sizeof(task) * new_capacity);
  if (new_tasks == NULL) {
    return 0;
  }
  // Copy the tasks such that the head of the queue is at the beginning of the
  // buffer. There are two cases to handle: either the queue wraps around the
  // end of the old buffer or it does not.
  int queued_tasks;
  if (queue->head <= queue->tail) {
    // No wrap. Copy the tasks in one chunk.
    queued_tasks = queue->tail - queue->head;
    memcpy(new_tasks, &queue->tasks[queue->head], sizeof(task) * queued_tasks);
  } else {
    // Wrap. Copy `first_queued` tasks up to the end of the old buffer and
    // `last_queued` tasks at the beginning of the old buffer.
    int first_queued = queue->capacity - queue->head;
    int last_queued = queue->tail;
    queued_tasks = first_queued + last_queued;
    memcpy(new_tasks, &queue->tasks[queue->head], sizeof(task) * first_queued);
    memcpy(new_tasks + first_queued, queue->tasks, sizeof(task) * last_queued);
  }
  free(queue->tasks);
  queue->tasks = new_tasks;
  queue->capacity = new_capacity;
  queue->head = 0;
  queue->tail = queued_tasks;
  return 1;
}

void em_task_queue_execute(em_task_queue* queue) {
  queue->processing = 1;
  pthread_mutex_lock(&queue->mutex);
  while (!em_task_queue_is_empty(queue)) {
    task t = em_task_queue_dequeue(queue);
    // Unlock while the task is running to allow more work to be queued in
    // parallel.
    pthread_mutex_unlock(&queue->mutex);
    t.func(t.arg);
    pthread_mutex_lock(&queue->mutex);
  }
  pthread_mutex_unlock(&queue->mutex);
  queue->processing = 0;
}

void em_task_queue_cancel(em_task_queue* queue) {
  pthread_mutex_lock(&queue->mutex);
  while (!em_task_queue_is_empty(queue)) {
    task t = em_task_queue_dequeue(queue);
    if (t.cancel) {
      t.cancel(t.arg);
    }
  }
  pthread_mutex_unlock(&queue->mutex);
  // Any subsequent messages to this queue (for example if a pthread struct is
  // reused for a future thread, potentially on a different worker) will require
  // a new notification. Clearing the flag is safe here because in both the
  // proxying queue and mailbox cases, there are no more outstanding references
  // to the queue after thread shutdown.
  queue->notification = NOTIFICATION_NONE;
}

int em_task_queue_enqueue(em_task_queue* queue, task t) {
  if (em_task_queue_is_full(queue) && !em_task_queue_grow(queue)) {
    return 0;
  }
  queue->tasks[queue->tail] = t;
  queue->tail = (queue->tail + 1) % queue->capacity;
  return 1;
}

task em_task_queue_dequeue(em_task_queue* queue) {
  task t = queue->tasks[queue->head];
  queue->head = (queue->head + 1) % queue->capacity;
  return t;
}

static void receive_notification(void* arg) {
  em_task_queue* tasks = arg;
  tasks->notification = NOTIFICATION_RECEIVED;
  em_task_queue_execute(tasks);
  notification_state expected = NOTIFICATION_RECEIVED;
  atomic_compare_exchange_strong(
    &tasks->notification, &expected, NOTIFICATION_NONE);
}

static void cancel_notification(void* arg) {
  em_task_queue* tasks = arg;
  em_task_queue_cancel(tasks);
}

int em_task_queue_send(em_task_queue* queue, task t) {
  // Ensure the target mailbox will remain open or detect that it is already
  // closed.
  if (!emscripten_thread_mailbox_ref(queue->thread)) {
    return 0;
  }

  pthread_mutex_lock(&queue->mutex);
  int enqueued = em_task_queue_enqueue(queue, t);
  pthread_mutex_unlock(&queue->mutex);
  if (!enqueued) {
    emscripten_thread_mailbox_unref(queue->thread);
    return 0;
  }

  // We're done if there is already a pending notification for this task queue.
  // Otherwise, we will send one.
  notification_state previous =
    atomic_exchange(&queue->notification, NOTIFICATION_PENDING);
  if (previous == NOTIFICATION_PENDING) {
    emscripten_thread_mailbox_unref(queue->thread);
    return 1;
  }

  emscripten_thread_mailbox_send(queue->thread,
                                 (task){.func = receive_notification,
                                        .cancel = cancel_notification,
                                        .arg = queue});
  emscripten_thread_mailbox_unref(queue->thread);
  return 1;
}