1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
// Copyright 2011 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// seen at https://github.com/kostya/benchmarks/blob/master/havlak/havlak.cpp
#include "stdio.h"
#include <set>
#include <unordered_set> // because set of pointers fails in cheerp
#include <unordered_map> // because map of pointers fails in cheerp
#include <map>
#include <list>
#include <vector>
#include <algorithm>
// Forward Decls
class BasicBlock;
class MaoCFG;
//--- MOCKING CODE begin -------------------
//
// These data structures are stubbed out to make the code below easier
// to review.
//
// BasicBlockEdge only maintains two pointers to BasicBlocks.
//
class BasicBlockEdge {
public:
inline BasicBlockEdge(MaoCFG *cfg, int from, int to);
BasicBlock *GetSrc() { return from_; }
BasicBlock *GetDst() { return to_; }
private:
BasicBlock *from_, *to_;
};
// BasicBlock only maintains a vector of in-edges and
// a vector of out-edges.
//
class BasicBlock {
public:
typedef std::vector<BasicBlock *> EdgeVector;
explicit BasicBlock(int name) : name_(name) {
}
EdgeVector *in_edges() { return &in_edges_; }
EdgeVector *out_edges() { return &out_edges_; }
int GetNumPred() { return in_edges_.size(); }
int GetNumSucc() { return out_edges_.size(); }
void AddOutEdge(BasicBlock *to) { out_edges_.push_back(to); }
void AddInEdge(BasicBlock *from) { in_edges_.push_back(from); }
private:
EdgeVector in_edges_, out_edges_;
int name_;
};
// MaoCFG maintains a list of nodes.
//
class MaoCFG {
public:
typedef std::unordered_map<int, BasicBlock *> NodeMap;
typedef std::list<BasicBlockEdge *> EdgeList;
MaoCFG() : start_node_(NULL) {
}
~MaoCFG() {
for (NodeMap::iterator it = basic_block_map_.begin();
it != basic_block_map_.end(); ++it)
delete (*it).second;
for (EdgeList::iterator edge_it = edge_list_.begin();
edge_it != edge_list_.end(); ++edge_it)
delete (*edge_it);
}
BasicBlock *CreateNode(int name) {
BasicBlock *node;
NodeMap::iterator it = basic_block_map_.find(name);
if (it == basic_block_map_.end()) {
node = new BasicBlock(name);
basic_block_map_[name] = node;
} else {
node = (*it).second;
}
if (GetNumNodes() == 1)
start_node_ = node;
return node;
}
void AddEdge(BasicBlockEdge *edge) {
edge_list_.push_back(edge);
}
int GetNumNodes() {
return basic_block_map_.size();
}
BasicBlock *GetStartBasicBlock() {
return start_node_;
}
BasicBlock *GetDst(BasicBlockEdge *edge) {
return edge->GetDst();
}
BasicBlock *GetSrc(BasicBlockEdge *edge) {
return edge->GetSrc();
}
NodeMap *GetBasicBlocks() {
return &basic_block_map_;
}
private:
NodeMap basic_block_map_;
BasicBlock *start_node_;
EdgeList edge_list_;
};
//
//--- MOCKING CODE end -------------------
//
// SimpleLoop
//
// Basic representation of loops, a loop has an entry point,
// one or more exit edges, a set of basic blocks, and potentially
// an outer loop - a "parent" loop.
//
// Furthermore, it can have any set of properties, e.g.,
// it can be an irreducible loop, have control flow, be
// a candidate for transformations, and what not.
//
//
class SimpleLoop {
public:
typedef std::unordered_set<BasicBlock *> BasicBlockSet;
typedef std::unordered_set<SimpleLoop *> LoopSet;
SimpleLoop() : parent_(NULL), is_root_(false), nesting_level_(0),
depth_level_(0) {
}
void AddNode(BasicBlock *basic_block) {
basic_blocks_.insert(basic_block);
}
void AddChildLoop(SimpleLoop *loop) {
children_.insert(loop);
}
void Dump() {
// Simplified for readability purposes.
printf("loop-%d, nest: %d, depth: %d\n",
counter_, nesting_level_, depth_level_);
}
LoopSet *GetChildren() {
return &children_;
}
// Getters/Setters
SimpleLoop *parent() { return parent_; }
int nesting_level() const { return nesting_level_; }
int depth_level() const { return depth_level_; }
int counter() const { return counter_; }
bool is_root() const { return is_root_; }
void set_parent(SimpleLoop *parent) {
parent_ = parent;
parent->AddChildLoop(this);
}
void set_is_root() { is_root_ = true; }
void set_counter(int value) { counter_ = value; }
void set_nesting_level(int level) {
nesting_level_ = level;
if (level == 0)
set_is_root();
}
void set_depth_level(int level) { depth_level_ = level; }
private:
BasicBlockSet basic_blocks_;
std::unordered_set<SimpleLoop *> children_;
SimpleLoop *parent_;
bool is_root_: 1;
int counter_;
int nesting_level_;
int depth_level_;
};
//
// LoopStructureGraph
//
// Maintain loop structure for a given CFG.
//
// Two values are maintained for this loop graph, depth, and nesting level.
// For example:
//
// loop nesting level depth
//----------------------------------------
// loop-0 2 0
// loop-1 1 1
// loop-3 1 1
// loop-2 0 2
//
class LoopStructureGraph {
public:
typedef std::list<SimpleLoop *> LoopList;
LoopStructureGraph() : root_(new SimpleLoop()),
loop_counter_(0) {
root_->set_nesting_level(0); // make it the root node
root_->set_counter(loop_counter_++);
AddLoop(root_);
}
~LoopStructureGraph() {
KillAll();
}
SimpleLoop *CreateNewLoop() {
SimpleLoop *loop = new SimpleLoop();
loop->set_counter(loop_counter_++);
return loop;
}
void KillAll() {
for (LoopList::iterator it = loops_.begin(); it != loops_.end(); ++it)
delete (*it);
}
void AddLoop(SimpleLoop *loop) {
loops_.push_back(loop);
}
void Dump() {
DumpRec(root_, 0);
}
void DumpRec(SimpleLoop *loop, int indent) {
// Simplified for readability purposes.
loop->Dump();
for (SimpleLoop::LoopSet::iterator liter = loop->GetChildren()->begin();
liter != loop->GetChildren()->end(); ++liter)
DumpRec(*liter, indent+1);
}
void CalculateNestingLevel() {
// link up all 1st level loops to artificial root node.
for (LoopList::iterator liter = loops_.begin();
liter != loops_.end(); ++liter) {
SimpleLoop *loop = *liter;
if (loop->is_root()) continue;
if (!loop->parent()) loop->set_parent(root_);
}
// recursively traverse the tree and assign levels.
CalculateNestingLevelRec(root_, 0);
}
void CalculateNestingLevelRec(SimpleLoop *loop, int depth) {
loop->set_depth_level(depth);
for (SimpleLoop::LoopSet::iterator liter = loop->GetChildren()->begin();
liter != loop->GetChildren()->end(); ++liter) {
CalculateNestingLevelRec(*liter, depth+1);
loop->set_nesting_level(std::max(loop->nesting_level(),
1+(*liter)->nesting_level()));
}
}
int GetNumLoops() const { return loops_.size(); }
SimpleLoop *root() const { return root_; }
private:
SimpleLoop *root_;
LoopList loops_;
int loop_counter_;
};
inline
BasicBlockEdge::BasicBlockEdge(MaoCFG *cfg,
int from_name,
int to_name) {
from_ = cfg->CreateNode(from_name);
to_ = cfg->CreateNode(to_name);
from_->AddOutEdge(to_);
to_->AddInEdge(from_);
cfg->AddEdge(this);
}
// External entry point.
int FindHavlakLoops(MaoCFG *CFG, LoopStructureGraph *LSG);
#include <stdio.h>
#include <list>
#include <set>
#include <vector>
#include <algorithm>
//======================================================
// Main Algorithm
//======================================================
//
// Union/Find algorithm after Tarjan, R.E., 1983, Data Structures
// and Network Algorithms.
//
class UnionFindNode {
public:
UnionFindNode() : parent_(NULL), bb_(NULL), loop_(NULL), dfs_number_(0) {
}
// Initialize this node.
//
void Init(BasicBlock *bb, int dfs_number) {
parent_ = this;
bb_ = bb;
dfs_number_ = dfs_number;
}
// Union/Find Algorithm - The find routine.
//
// Implemented with Path Compression (inner loops are only
// visited and collapsed once, however, deep nests would still
// result in significant traversals).
//
UnionFindNode *FindSet() {
typedef std::list<UnionFindNode *> NodeListType;
NodeListType nodeList;
UnionFindNode *node = this;
while (node != node->parent()) {
if (node->parent() != node->parent()->parent())
nodeList.push_back(node);
node = node->parent();
}
// Path Compression, all nodes' parents point to the 1st level parent.
NodeListType::iterator iter = nodeList.begin();
NodeListType::iterator end = nodeList.end();
for (; iter != end; ++iter)
(*iter)->set_parent(node->parent());
return node;
}
// Union/Find Algorithm - The union routine.
//
// We rely on path compression.
//
void Union(UnionFindNode *B) {
set_parent(B);
}
// Getters/Setters
//
UnionFindNode *parent() const { return parent_; }
BasicBlock *bb() const { return bb_; }
SimpleLoop *loop() const { return loop_; }
int dfs_number() const { return dfs_number_; }
void set_parent(UnionFindNode *parent) { parent_ = parent; }
void set_loop(SimpleLoop *loop) { loop_ = loop; }
private:
UnionFindNode *parent_;
BasicBlock *bb_;
SimpleLoop *loop_;
int dfs_number_;
};
//------------------------------------------------------------------
// Loop Recognition
//
// based on:
// Paul Havlak, Nesting of Reducible and Irreducible Loops,
// Rice University.
//
// We avoid doing tree balancing and instead use path compression
// to avoid traversing parent pointers over and over.
//
// Most of the variable names and identifiers are taken literally
// from this paper (and the original Tarjan paper mentioned above).
//-------------------------------------------------------------------
class HavlakLoopFinder {
public:
HavlakLoopFinder(MaoCFG *cfg, LoopStructureGraph *lsg) :
CFG_(cfg), lsg_(lsg) {
}
enum BasicBlockClass {
BB_TOP, // uninitialized
BB_NONHEADER, // a regular BB
BB_REDUCIBLE, // reducible loop
BB_SELF, // single BB loop
BB_IRREDUCIBLE, // irreducible loop
BB_DEAD, // a dead BB
BB_LAST // Sentinel
};
//
// Constants
//
// Marker for uninitialized nodes.
static const int kUnvisited = -1;
// Safeguard against pathologic algorithm behavior.
static const int kMaxNonBackPreds = (32*1024);
//
// Local types used for Havlak algorithm, all carefully
// selected to guarantee minimal complexity.
//
typedef std::vector<UnionFindNode> NodeVector;
typedef std::unordered_map<BasicBlock*, int> BasicBlockMap;
typedef std::list<int> IntList;
typedef std::set<int> IntSet;
typedef std::list<UnionFindNode*> NodeList;
typedef std::vector<IntList> IntListVector;
typedef std::vector<IntSet> IntSetVector;
typedef std::vector<int> IntVector;
typedef std::vector<char> CharVector;
//
// IsAncestor
//
// As described in the paper, determine whether a node 'w' is a
// "true" ancestor for node 'v'.
//
// Dominance can be tested quickly using a pre-order trick
// for depth-first spanning trees. This is why DFS is the first
// thing we run below.
//
bool IsAncestor(int w, int v, IntVector *last) {
return ((w <= v) && (v <= (*last)[w]));
}
// Iterators
//
typedef BasicBlock::EdgeVector::iterator BasicBlockIter;
//
// DFS - Depth-First-Search
//
// DESCRIPTION:
// Simple depth first traversal along out edges with node numbering.
//
int DFS(BasicBlock *current_node,
NodeVector *nodes,
BasicBlockMap *number,
IntVector *last,
const int current) {
(*nodes)[current].Init(current_node, current);
(*number)[current_node] = current;
int lastid = current;
for (BasicBlockIter outedges = current_node->out_edges()->begin();
outedges != current_node->out_edges()->end(); ++outedges) {
BasicBlock *target = *outedges;
if ((*number)[target] == kUnvisited)
lastid = DFS(target, nodes, number, last, lastid + 1);
}
(*last)[(*number)[current_node]] = lastid;
return lastid;
}
//
// FindLoops
//
// Find loops and build loop forest using Havlak's algorithm, which
// is derived from Tarjan. Variable names and step numbering has
// been chosen to be identical to the nomenclature in Havlak's
// paper (which is similar to the one used by Tarjan).
//
void FindLoops() {
if (!CFG_->GetStartBasicBlock()) return;
int size = CFG_->GetNumNodes();
IntSetVector non_back_preds(size);
IntListVector back_preds(size);
IntVector header(size);
CharVector type(size);
IntVector last(size);
NodeVector nodes(size);
BasicBlockMap number;
// Step a:
// - initialize all nodes as unvisited.
// - depth-first traversal and numbering.
// - unreached BB's are marked as dead.
//
for (MaoCFG::NodeMap::iterator bb_iter =
CFG_->GetBasicBlocks()->begin();
bb_iter != CFG_->GetBasicBlocks()->end(); ++bb_iter) {
number[(*bb_iter).second] = kUnvisited;
}
DFS(CFG_->GetStartBasicBlock(), &nodes, &number, &last, 0);
// Step b:
// - iterate over all nodes.
//
// A backedge comes from a descendant in the DFS tree, and non-backedges
// from non-descendants (following Tarjan).
//
// - check incoming edges 'v' and add them to either
// - the list of backedges (back_preds) or
// - the list of non-backedges (non_back_preds)
//
for (int w = 0; w < size; w++) {
header[w] = 0;
type[w] = BB_NONHEADER;
BasicBlock *node_w = nodes[w].bb();
if (!node_w) {
type[w] = BB_DEAD;
continue; // dead BB
}
if (node_w->GetNumPred()) {
for (BasicBlockIter inedges = node_w->in_edges()->begin();
inedges != node_w->in_edges()->end(); ++inedges) {
BasicBlock *node_v = *inedges;
int v = number[ node_v ];
if (v == kUnvisited) continue; // dead node
if (IsAncestor(w, v, &last))
back_preds[w].push_back(v);
else
non_back_preds[w].insert(v);
}
}
}
// Start node is root of all other loops.
header[0] = 0;
// Step c:
//
// The outer loop, unchanged from Tarjan. It does nothing except
// for those nodes which are the destinations of backedges.
// For a header node w, we chase backward from the sources of the
// backedges adding nodes to the set P, representing the body of
// the loop headed by w.
//
// By running through the nodes in reverse of the DFST preorder,
// we ensure that inner loop headers will be processed before the
// headers for surrounding loops.
//
for (int w = size-1; w >= 0; w--) {
NodeList node_pool; // this is 'P' in Havlak's paper
BasicBlock *node_w = nodes[w].bb();
if (!node_w) continue; // dead BB
// Step d:
IntList::iterator back_pred_iter = back_preds[w].begin();
IntList::iterator back_pred_end = back_preds[w].end();
for (; back_pred_iter != back_pred_end; back_pred_iter++) {
int v = *back_pred_iter;
if (v != w)
node_pool.push_back(nodes[v].FindSet());
else
type[w] = BB_SELF;
}
// Copy node_pool to worklist.
//
NodeList worklist;
NodeList::iterator niter = node_pool.begin();
NodeList::iterator nend = node_pool.end();
for (; niter != nend; ++niter)
worklist.push_back(*niter);
if (!node_pool.empty())
type[w] = BB_REDUCIBLE;
// work the list...
//
while (!worklist.empty()) {
UnionFindNode x = *worklist.front();
worklist.pop_front();
// Step e:
//
// Step e represents the main difference from Tarjan's method.
// Chasing upwards from the sources of a node w's backedges. If
// there is a node y' that is not a descendant of w, w is marked
// the header of an irreducible loop, there is another entry
// into this loop that avoids w.
//
// The algorithm has degenerated. Break and
// return in this case.
//
size_t non_back_size = non_back_preds[x.dfs_number()].size();
if (non_back_size > kMaxNonBackPreds) {
lsg_->KillAll();
return;
}
IntSet::iterator non_back_pred_iter =
non_back_preds[x.dfs_number()].begin();
IntSet::iterator non_back_pred_end =
non_back_preds[x.dfs_number()].end();
for (; non_back_pred_iter != non_back_pred_end; non_back_pred_iter++) {
UnionFindNode y = nodes[*non_back_pred_iter];
UnionFindNode *ydash = y.FindSet();
if (!IsAncestor(w, ydash->dfs_number(), &last)) {
type[w] = BB_IRREDUCIBLE;
non_back_preds[w].insert(ydash->dfs_number());
} else {
if (ydash->dfs_number() != w) {
NodeList::iterator nfind = find(node_pool.begin(),
node_pool.end(), ydash);
if (nfind == node_pool.end()) {
worklist.push_back(ydash);
node_pool.push_back(ydash);
}
}
}
}
}
// Collapse/Unionize nodes in a SCC to a single node
// For every SCC found, create a loop descriptor and link it in.
//
if (!node_pool.empty() || (type[w] == BB_SELF)) {
SimpleLoop* loop = lsg_->CreateNewLoop();
// At this point, one can set attributes to the loop, such as:
//
// the bottom node:
// IntList::iterator iter = back_preds[w].begin();
// loop bottom is: nodes[*backp_iter].node);
//
// the number of backedges:
// back_preds[w].size()
//
// whether this loop is reducible:
// type[w] != BB_IRREDUCIBLE
//
// TODO(rhundt): Define those interfaces in the Loop Forest.
//
nodes[w].set_loop(loop);
for (niter = node_pool.begin(); niter != node_pool.end(); niter++) {
UnionFindNode *node = (*niter);
// Add nodes to loop descriptor.
header[node->dfs_number()] = w;
node->Union(&nodes[w]);
// Nested loops are not added, but linked together.
if (node->loop())
node->loop()->set_parent(loop);
else
loop->AddNode(node->bb());
}
lsg_->AddLoop(loop);
} // node_pool.size
} // Step c
} // FindLoops
private:
MaoCFG *CFG_; // current control flow graph.
LoopStructureGraph *lsg_; // loop forest.
}; // HavlakLoopFinder
// Constant instantiations.
//
const int HavlakLoopFinder::kUnvisited;
const int HavlakLoopFinder::kMaxNonBackPreds;
// External entry point.
int FindHavlakLoops(MaoCFG *CFG, LoopStructureGraph *LSG) {
HavlakLoopFinder finder(CFG, LSG);
finder.FindLoops();
return LSG->GetNumLoops();
}
#include <stdio.h>
#include <list>
#include <map>
#include <set>
#include <vector>
#include <algorithm>
int buildDiamond(MaoCFG *cfg, int start) {
int bb0 = start;
new BasicBlockEdge(cfg, bb0, bb0 + 1);
new BasicBlockEdge(cfg, bb0, bb0 + 2);
new BasicBlockEdge(cfg, bb0 + 1, bb0 + 3);
new BasicBlockEdge(cfg, bb0 + 2, bb0 + 3);
return bb0 + 3;
}
void buildConnect(MaoCFG *cfg, int start, int end) {
new BasicBlockEdge(cfg, start, end);
}
int buildStraight(MaoCFG *cfg, int start, int n) {
for (int i = 0; i < n; i++) {
buildConnect(cfg, start + i, start + i + 1);
}
return start + n;
}
int buildBaseLoop(MaoCFG *cfg, int from) {
int header = buildStraight(cfg, from, 1);
int diamond1 = buildDiamond(cfg, header);
int d11 = buildStraight(cfg, diamond1, 1);
int diamond2 = buildDiamond(cfg, d11);
int footer = buildStraight(cfg, diamond2, 1);
buildConnect(cfg, diamond2, d11);
buildConnect(cfg, diamond1, header);
buildConnect(cfg, footer, from);
footer = buildStraight(cfg, footer, 1);
return footer;
}
int main(int argc, char **argv) {
int NUM;
int arg = argc > 1 ? argv[1][0] - '0' : 3;
switch(arg) {
case 0: return 0; break;
case 1: NUM = 10; break;
case 2: NUM = 30; break;
case 3: NUM = 60; break;
case 4: NUM = 100; break;
case 5: NUM = 150; break;
default: printf("error: %d\\n", arg); return -1;
}
printf("Welcome to LoopTesterApp, C++ edition\n");
MaoCFG cfg;
LoopStructureGraph lsg;
printf("Constructing Simple CFG...\n");
cfg.CreateNode(0); // top
buildBaseLoop(&cfg, 0);
cfg.CreateNode(1); // bottom
new BasicBlockEdge(&cfg, 0, 2);
printf("15000 dummy loops\n");
for (int dummyloops = 0; dummyloops < 15000; ++dummyloops) {
LoopStructureGraph * lsglocal = new LoopStructureGraph();
FindHavlakLoops(&cfg, lsglocal);
delete(lsglocal);
}
printf("Constructing CFG...\n");
int n = 2;
for (int parlooptrees = 0; parlooptrees < 10; parlooptrees++) {
cfg.CreateNode(n + 1);
buildConnect(&cfg, 2, n + 1);
n = n + 1;
for (int i = 0; i < 20; i++) {
int top = n;
n = buildStraight(&cfg, n, 1);
for (int j = 0; j < 25; j++) {
n = buildBaseLoop(&cfg, n);
}
int bottom = buildStraight(&cfg, n, 1);
buildConnect(&cfg, n, top);
n = bottom;
}
buildConnect(&cfg, n, 1);
}
printf("Performing Loop Recognition\n1 Iteration\n");
int num_loops = FindHavlakLoops(&cfg, &lsg);
printf("Another %d iterations...\n", NUM);
int sum = 0;
for (int i = 0; i < NUM; i++) {
LoopStructureGraph lsg;
//printf(".");
sum += FindHavlakLoops(&cfg, &lsg);
}
printf("\nFound %d loops (including artificial root node)"
"(%d)\n", num_loops, sum);
return 0;
}
|