1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#include <cassert>
#include <condition_variable>
#include <emscripten/proxying.h>
#include <emscripten/eventloop.h>
#include <iostream>
#include <sched.h>
using namespace emscripten;
// The worker threads we will use. `looper` sits in a loop, continuously
// processing work as it becomes available, while `returner` returns to the JS
// event loop each time it processes work.
std::thread looper;
std::thread returner;
// The queue used to send work to both `looper` and `returner`.
ProxyingQueue queue;
// Whether `looper` should exit.
std::atomic<bool> should_quit{false};
void looper_main() {
while (!should_quit) {
queue.execute();
sched_yield();
}
}
void returner_main() {
// Return back to the event loop while keeping the runtime alive.
// Note that we can't use `emscripten_exit_with_live_runtime` here without
// introducing a memory leak due to way to C++11 threads interact with
// unwinding. See https://github.com/emscripten-core/emscripten/issues/17091.
emscripten_runtime_keepalive_push();
}
void test_proxy_async() {
std::cout << "Testing async proxying\n";
int i = 0;
std::mutex mutex;
std::condition_variable cond;
std::thread::id executor;
// Proxy to ourselves.
queue.proxyAsync(pthread_self(), [&]() {
i = 1;
executor = std::this_thread::get_id();
});
assert(i == 0);
queue.execute();
assert(i == 1);
assert(executor == std::this_thread::get_id());
// Proxy to looper.
{
queue.proxyAsync(looper.native_handle(), [&]() {
{
std::unique_lock<std::mutex> lock(mutex);
i = 2;
}
executor = std::this_thread::get_id();
cond.notify_one();
});
std::unique_lock<std::mutex> lock(mutex);
cond.wait(lock, [&]() { return i == 2; });
assert(executor == looper.get_id());
}
// Proxy to returner.
{
queue.proxyAsync(returner.native_handle(), [&]() {
{
std::unique_lock<std::mutex> lock(mutex);
i = 3;
}
executor = std::this_thread::get_id();
cond.notify_one();
});
std::unique_lock<std::mutex> lock(mutex);
cond.wait(lock, [&]() { return i == 3; });
assert(executor == returner.get_id());
}
}
void test_proxy_sync() {
std::cout << "Testing sync proxying\n";
int i = 0;
std::thread::id executor;
// Proxy to looper.
{
queue.proxySync(looper.native_handle(), [&]() {
i = 2;
executor = std::this_thread::get_id();
});
assert(i == 2);
assert(executor == looper.get_id());
}
// Proxy to returner.
{
queue.proxySync(returner.native_handle(), [&]() {
i = 3;
executor = std::this_thread::get_id();
});
assert(i == 3);
assert(executor == returner.get_id());
}
}
void test_proxy_sync_with_ctx(void) {
std::cout << "Testing sync_with_ctx proxying\n";
int i = 0;
std::thread::id executor;
// Proxy to looper.
{
queue.proxySyncWithCtx(looper.native_handle(), [&](auto ctx) {
i = 2;
executor = std::this_thread::get_id();
ctx.finish();
});
assert(i == 2);
assert(executor == looper.get_id());
}
// Proxy to returner.
{
queue.proxySyncWithCtx(returner.native_handle(), [&](auto ctx) {
i = 3;
executor = std::this_thread::get_id();
auto finish = (void(*)(void*))emscripten_proxy_finish;
emscripten_async_call(finish, ctx.ctx, 0);
});
assert(i == 3);
assert(executor == returner.get_id());
}
}
void test_proxy_callback(void) {
std::cout << "Testing callback proxying\n";
int i = 0;
thread_local int j = 0;
std::thread::id executor;
// Proxy to ourselves.
queue.proxyCallback(
pthread_self(),
[&]() {
i = 1;
executor = std::this_thread::get_id();
},
[&]() { j = 1; },
{});
assert(i == 0);
queue.execute();
assert(i == 1);
assert(executor == std::this_thread::get_id());
assert(j == 1);
// Proxy to looper.
{
queue.proxyCallback(
looper.native_handle(),
[&]() {
i = 2;
executor = std::this_thread::get_id();
},
[&]() { j = 2; },
{});
// TODO: Add a way to wait for work before executing it.
while (j != 2) {
queue.execute();
}
assert(i == 2);
assert(executor == looper.get_id());
}
// Proxy to returner.
{
queue.proxyCallback(
returner.native_handle(),
[&]() {
i = 3;
executor = std::this_thread::get_id();
},
[&]() { j = 3; },
{});
// TODO: Add a way to wait for work before executing it.
while (j != 3) {
queue.execute();
}
assert(i == 3);
assert(executor == returner.get_id());
}
}
void test_proxy_callback_with_ctx(void) {
std::cout << "Testing callback_with_ctx proxying\n";
int i = 0;
thread_local int j = 0;
std::thread::id executor;
// Proxy to ourselves.
queue.proxyCallbackWithCtx(
pthread_self(),
[&](auto ctx) {
i = 1;
executor = std::this_thread::get_id();
ctx.finish();
},
[&]() { j = 1; },
{});
assert(i == 0);
queue.execute();
assert(i == 1);
assert(executor == std::this_thread::get_id());
assert(j == 1);
// Proxy to looper.
{
queue.proxyCallbackWithCtx(
looper.native_handle(),
[&](auto ctx) {
i = 2;
executor = std::this_thread::get_id();
ctx.finish();
},
[&]() { j = 2; },
{});
// TODO: Add a way to wait for work before executing it.
while (j != 2) {
queue.execute();
}
assert(i == 2);
assert(executor == looper.get_id());
}
// Proxy to returner.
{
queue.proxyCallbackWithCtx(
returner.native_handle(),
[&](auto ctx) {
i = 3;
executor = std::this_thread::get_id();
auto finish = (void (*)(void*))emscripten_proxy_finish;
emscripten_async_call(finish, ctx.ctx, 0);
},
[&]() { j = 3; },
{});
// TODO: Add a way to wait for work before executing it.
while (j != 3) {
queue.execute();
}
assert(i == 3);
assert(executor == returner.get_id());
}
}
int main(int argc, char* argv[]) {
looper = std::thread(looper_main);
returner = std::thread(returner_main);
test_proxy_async();
test_proxy_sync();
test_proxy_sync_with_ctx();
test_proxy_callback();
test_proxy_callback_with_ctx();
should_quit = true;
looper.join();
pthread_cancel(returner.native_handle());
returner.join();
std::cout << "done\n";
}
|