File: Angle.cpp

package info (click to toggle)
endless-sky 0.10.16-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 414,608 kB
  • sloc: cpp: 73,435; python: 893; xml: 666; sh: 271; makefile: 28
file content (211 lines) | stat: -rw-r--r-- 5,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/* Angle.cpp
Copyright (c) 2014 by Michael Zahniser

Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/

#include "Angle.h"

#include "pi.h"
#include "Random.h"

#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <vector>

using namespace std;

namespace {
	// Suppose you want to be able to turn 360 degrees in one second. Then you are
	// turning 6 degrees per time step. If the Angle lookup is 2^16 steps, then 6
	// degrees is 1092 steps, and your turn speed is accurate to +- 0.05%. That seems
	// plenty accurate to me. At that step size, the lookup table is exactly 1 MB.
	constexpr int32_t STEPS = 0x10000;
	constexpr int32_t MASK = STEPS - 1;
	constexpr double DEG_TO_STEP = STEPS / 360.;
	constexpr double STEP_TO_RAD = PI / (STEPS / 2);

	vector<Point> InitUnitCache()
	{
		vector<Point> cache;
		cache.reserve(STEPS);
		for(int i = 0; i < STEPS; ++i)
		{
			const double radians = i * STEP_TO_RAD;
			// The graphics use the usual screen coordinate system, meaning that
			// positive Y is down rather than up. Angles are clock angles, i.e.
			// 0 is 12:00 and angles increase in the clockwise direction. So, an
			// angle of 0 degrees is pointing in the direction (0, -1).
			cache.emplace_back(sin(radians), -cos(radians));
		}
		return cache;
	}

	const vector<Point> unitCache = InitUnitCache();
}



// Get a random angle.
Angle Angle::Random()
{
	return Angle(static_cast<int32_t>(Random::Int(STEPS)));
}



// Get a random angle between 0 and the given number of degrees.
Angle Angle::Random(const double range)
{
	// The given range would have to be about 22.6 million degrees to overflow
	// the size of a 32-bit int, which should never happen in normal usage.
	const uint32_t mod = static_cast<uint32_t>(fabs(range) * DEG_TO_STEP) + 1;
	return Angle(mod ? static_cast<int32_t>(Random::Int(mod)) & MASK : 0);
}



// Construct an Angle from the given angle in degrees.
Angle::Angle(const double degrees) noexcept
	: angle(llround(degrees * DEG_TO_STEP) & MASK)
{
	// Make sure llround does not overflow with the values of System::SetDate.
	// "now" has 32 bit integer precision. "speed" and "offset" have floating
	// point precision and should be in the range from -360 to 360.
	static_assert(sizeof(long long) >= 8, "llround can overflow");
}



// Construct an angle pointing in the direction of the given vector.
Angle::Angle(const Point &point) noexcept
	: Angle(TO_DEG * atan2(point.X(), -point.Y()))
{
}



Angle Angle::operator+(const Angle &other) const
{
	Angle result = *this;
	result += other;
	return result;
}



Angle &Angle::operator+=(const Angle &other)
{
	angle += other.angle;
	angle &= MASK;
	return *this;
}



Angle Angle::operator-(const Angle &other) const
{
	Angle result = *this;
	result -= other;
	return result;
}



Angle &Angle::operator-=(const Angle &other)
{
	angle -= other.angle;
	angle &= MASK;
	return *this;
}



Angle Angle::operator-() const
{
	return Angle((-angle) & MASK);
}



bool Angle::operator==(const Angle &other) const
{
	return angle == other.angle;
}



bool Angle::operator!=(const Angle &other) const
{
	return angle != other.angle;
}



// Get a unit vector in the direction of this angle.
Point Angle::Unit() const
{
	return unitCache[angle];
}



// Convert an angle back to a value in degrees.
double Angle::Degrees() const
{
	// Most often when this function is used, it's in settings where it makes
	// sense to return an angle in the range [-180, 180) rather than in the
	// Angle's native range of [0, 360).
	return angle / DEG_TO_STEP - 360. * (angle >= STEPS / 2);
}



// Convert an Angle object to degrees, in the range 0 to 360.
double Angle::AbsDegrees() const
{
	return angle / DEG_TO_STEP;
}



// Return a point rotated by this angle around (0, 0).
Point Angle::Rotate(const Point &point) const
{
	// If using the normal mathematical coordinate system, this would be easier.
	// Since we're not, the math is a tiny bit less elegant:
	const Point unit = Unit();
	return Point(-unit.Y() * point.X() - unit.X() * point.Y(),
		-unit.Y() * point.Y() + unit.X() * point.X());
}



// Judge whether this is inside from "base" to "limit."
// The range from "base" to "limit" is expressed by "clock" orientation.
bool Angle::IsInRange(const Angle &base, const Angle &limit) const
{
	// Choose an edge of the arc as the reference angle (base) and
	// compare relative angles to decide whether this is in the range.
	Angle normalizedLimit = limit - base;
	Angle normalizedTarget = *this - base;
	return normalizedTarget.angle <= normalizedLimit.angle;
}



// Constructor using Angle's internal representation.
Angle::Angle(const int32_t angle)
	: angle(angle)
{
}