1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/* CollisionSet.cpp
Copyright (c) 2016 by Michael Zahniser
Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "CollisionSet.h"
#include "Body.h"
#include "Collision.h"
#include "Government.h"
#include "Logger.h"
#include "image/Mask.h"
#include "Point.h"
#include "Projectile.h"
#include "Ship.h"
#include <algorithm>
#include <cstdlib>
#include <numeric>
#include <set>
#include <string>
using namespace std;
namespace {
// Maximum allowed projectile velocity.
constexpr int MAX_VELOCITY = 450000;
// Velocity used for any projectiles with v > MAX_VELOCITY
constexpr int USED_MAX_VELOCITY = MAX_VELOCITY - 1;
// Warn the user only once about too-large projectile velocities.
bool warned = false;
thread_local vector<bool> seen;
}
// Initialize a collision set. The cell size and cell count should both be
// powers of two; otherwise, they are rounded down to a power of two.
CollisionSet::CollisionSet(unsigned cellSize, unsigned cellCount, CollisionType collisionType)
: collisionType(collisionType)
{
// Right shift amount to convert from (x, y) location to grid (x, y).
SHIFT = 0u;
while(cellSize >>= 1u)
++SHIFT;
CELL_SIZE = (1u << SHIFT);
CELL_MASK = CELL_SIZE - 1u;
// Number of grid rows and columns.
CELLS = 1u;
while(cellCount >>= 1u)
CELLS <<= 1;
WRAP_MASK = CELLS - 1u;
// Just in case Clear() isn't called before objects are added:
Clear(0);
}
// Clear all objects in the set.
void CollisionSet::Clear(int step)
{
this->step = step;
added.clear();
sorted.clear();
counts.clear();
all.clear();
// The counts vector starts with two sentinel slots that will be used in the
// course of performing the radix sort.
counts.resize(CELLS * CELLS + 2u, 0u);
}
// Add an object to the set.
void CollisionSet::Add(Body &body)
{
// Calculate the range of (x, y) grid coordinates this object covers.
int minX = static_cast<int>(body.Position().X() - body.Radius()) >> SHIFT;
int minY = static_cast<int>(body.Position().Y() - body.Radius()) >> SHIFT;
int maxX = static_cast<int>(body.Position().X() + body.Radius()) >> SHIFT;
int maxY = static_cast<int>(body.Position().Y() + body.Radius()) >> SHIFT;
// Add a pointer to this object in every grid cell it occupies.
for(int y = minY; y <= maxY; ++y)
{
auto gy = y & WRAP_MASK;
for(int x = minX; x <= maxX; ++x)
{
auto gx = x & WRAP_MASK;
added.emplace_back(&body, all.size(), x, y);
++counts[gy * CELLS + gx + 2];
}
}
// Also save a pointer to this object irrespective of its grid location.
all.emplace_back(&body);
}
// Finish adding objects (and organize them into the final lookup table).
void CollisionSet::Finish()
{
// Perform a partial sum to convert the counts of items in each bin into the
// index of the output element where that bin begins.
partial_sum(counts.begin(), counts.end(), counts.begin());
// Allocate space for a sorted copy of the vector.
sorted.resize(added.size());
// Now, perform a radix sort.
for(const Entry &entry : added)
{
auto gx = entry.x & WRAP_MASK;
auto gy = entry.y & WRAP_MASK;
auto index = gy * CELLS + gx + 1;
sorted[counts[index]++] = entry;
}
// Now, counts[index] is where a certain bin begins.
}
// Get all possible collisions for the given projectile. Collisions are not necessarily
// sorted by distance.
void CollisionSet::Line(const Projectile &projectile, vector<Collision> &result) const
{
// What objects the projectile hits depends on its government.
const Government *pGov = projectile.GetGovernment();
// Convert the projectile to a line represented by its start and end points.
Point from = projectile.Position();
Point to = from + projectile.Velocity();
Line(from, to, result, pGov, projectile.Target());
}
// Get all possible collisions along a line. Collisions are not necessarily sorted by
// distance.
void CollisionSet::Line(const Point &from, const Point &to, vector<Collision> &lineResult,
const Government *pGov, const Body *target) const
{
const int x = from.X();
const int y = from.Y();
const int endX = to.X();
const int endY = to.Y();
// Figure out which grid cell the line starts and ends in.
int gx = x >> SHIFT;
int gy = y >> SHIFT;
const int endGX = endX >> SHIFT;
const int endGY = endY >> SHIFT;
// Special case, very common: the projectile is contained in one grid cell.
// In this case, all the complicated code below can be skipped.
if(gx == endGX && gy == endGY)
{
// Examine all objects in the current grid cell.
const auto index = (gy & WRAP_MASK) * CELLS + (gx & WRAP_MASK);
vector<Entry>::const_iterator it = sorted.begin() + counts[index];
vector<Entry>::const_iterator end = sorted.begin() + counts[index + 1];
for( ; it != end; ++it)
{
// Skip objects that were put in this same grid cell only because
// of the cell coordinates wrapping around.
if(it->x != gx || it->y != gy)
continue;
// Check if this projectile can hit this object. If either the
// projectile or the object has no government, it will always hit.
const Government *iGov = it->body->GetGovernment();
if(it->body != target && iGov && pGov && !iGov->IsEnemy(pGov))
continue;
const Mask &mask = it->body->GetMask(step);
Point offset = from - it->body->Position();
const double range = mask.Collide(offset, to - from, it->body->Facing());
if(range < 1.)
lineResult.emplace_back(it->body, collisionType, range);
}
return;
}
const Point pVelocity = (to - from);
if(pVelocity.Length() > MAX_VELOCITY)
{
// Cap projectile velocity to prevent integer overflows.
if(!warned)
{
Logger::LogError("Warning: maximum projectile velocity is " + to_string(MAX_VELOCITY));
warned = true;
}
Point newEnd = from + pVelocity.Unit() * USED_MAX_VELOCITY;
Line(from, newEnd, lineResult, pGov, target);
return;
}
// When stepping from one grid cell to the next, we'll go in this direction.
const int stepX = (x <= endX ? 1 : -1);
const int stepY = (y <= endY ? 1 : -1);
// Calculate the slope of the line, shifted so it is positive in both axes.
const uint64_t mx = abs(endX - x);
const uint64_t my = abs(endY - y);
// Behave as if each grid cell has this width and height. This guarantees
// that we only need to work with integer coordinates.
const uint64_t scale = max<uint64_t>(mx, 1) * max<uint64_t>(my, 1);
const uint64_t fullScale = CELL_SIZE * scale;
// Get the "remainder" distance that we must travel in x and y in order to
// reach the next grid cell. These ensure we only check grid cells which the
// line will pass through.
uint64_t rx = scale * (x & CELL_MASK);
uint64_t ry = scale * (y & CELL_MASK);
if(stepX > 0)
rx = fullScale - rx;
if(stepY > 0)
ry = fullScale - ry;
seen.clear();
seen.resize(all.size());
while(true)
{
// Examine all objects in the current grid cell.
auto i = (gy & WRAP_MASK) * CELLS + (gx & WRAP_MASK);
vector<Entry>::const_iterator it = sorted.begin() + counts[i];
vector<Entry>::const_iterator end = sorted.begin() + counts[i + 1];
for( ; it != end; ++it)
{
// Skip objects that were put in this same grid cell only because
// of the cell coordinates wrapping around.
if(it->x != gx || it->y != gy)
continue;
if(seen[it->seenIndex])
continue;
seen[it->seenIndex] = true;
// Check if this projectile can hit this object. If either the
// projectile or the object has no government, it will always hit.
const Government *iGov = it->body->GetGovernment();
if(it->body != target && iGov && pGov && !iGov->IsEnemy(pGov))
continue;
const Mask &mask = it->body->GetMask(step);
Point offset = from - it->body->Position();
const double range = mask.Collide(offset, to - from, it->body->Facing());
if(range < 1.)
lineResult.emplace_back(it->body, collisionType, range);
}
// Check if we've reached the final grid cell.
if(gx == endGX && gy == endGY)
break;
// If not, move to the next one. Check whether rx / mx < ry / my.
const int64_t diff = rx * my - ry * mx;
if(!diff)
{
// The line is exactly intersecting a corner.
rx = fullScale;
ry = fullScale;
// Make sure we don't step past the end grid.
if(gx == endGX && gy + stepY == endGY)
break;
if(gy == endGY && gx + stepX == endGX)
break;
gx += stepX;
gy += stepY;
}
else if(diff < 0)
{
// Because of the scale used, the rx coordinate is always divisible
// by mx, so this will always come out even. The mx will always be
// nonzero because otherwise, the comparison would have been false.
ry -= my * (rx / mx);
rx = fullScale;
gx += stepX;
}
else
{
// Calculate how much x distance remains until the edge of the cell
// after moving forward to the edge in the y direction.
rx -= mx * (ry / my);
ry = fullScale;
gy += stepY;
}
}
}
// Get all objects within the given range of the given point.
void CollisionSet::Circle(const Point ¢er, double radius, vector<Body *> &result) const
{
Ring(center, 0., radius, result);
}
// Get all objects touching a ring with a given inner and outer range
// centered at the given point.
void CollisionSet::Ring(const Point ¢er, double inner, double outer, vector<Body *> &circleResult) const
{
// Calculate the range of (x, y) grid coordinates this ring covers.
const int minX = static_cast<int>(center.X() - outer) >> SHIFT;
const int minY = static_cast<int>(center.Y() - outer) >> SHIFT;
const int maxX = static_cast<int>(center.X() + outer) >> SHIFT;
const int maxY = static_cast<int>(center.Y() + outer) >> SHIFT;
seen.clear();
seen.resize(all.size());
for(int y = minY; y <= maxY; ++y)
{
const auto gy = y & WRAP_MASK;
for(int x = minX; x <= maxX; ++x)
{
const auto gx = x & WRAP_MASK;
const auto index = gy * CELLS + gx;
vector<Entry>::const_iterator it = sorted.begin() + counts[index];
vector<Entry>::const_iterator end = sorted.begin() + counts[index + 1];
for( ; it != end; ++it)
{
// Skip objects that were put in this same grid cell only because
// of the cell coordinates wrapping around.
if(it->x != x || it->y != y)
continue;
if(seen[it->seenIndex])
continue;
seen[it->seenIndex] = true;
const Mask &mask = it->body->GetMask(step);
Point offset = center - it->body->Position();
const double length = offset.Length();
if((length <= outer && length >= inner)
|| mask.WithinRing(offset, it->body->Facing(), inner, outer))
circleResult.push_back(it->body);
}
}
}
}
const vector<Body *> &CollisionSet::All() const
{
return all;
}
|