File: ConditionSet.cpp

package info (click to toggle)
endless-sky 0.10.16-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 414,608 kB
  • sloc: cpp: 73,435; python: 893; xml: 666; sh: 271; makefile: 28
file content (802 lines) | stat: -rw-r--r-- 22,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/* ConditionSet.cpp
Copyright (c) 2014-2024 by Michael Zahniser and others

Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/

#include "ConditionSet.h"

#include "ConditionsStore.h"
#include "DataNode.h"
#include "DataWriter.h"
#include "Logger.h"

#include <algorithm>
#include <cmath>
#include <limits>
#include <numeric>
#include <set>
#include <utility>

using namespace std;

namespace
{
	typedef int64_t (*BinFun)(int64_t, int64_t);
	BinFun Op(ConditionSet::ExpressionOp op)
	{
		// This map defines functions that each "operator" should be mapped to.
		// In each function "a" is the condition's current value and "b" is the
		// integer value given as the other argument of the operator.
		// Test operators return 0 (false) or 1 (true).
		// "Apply" operators return the value that the condition should have
		// after applying the expression.
		static const map<ConditionSet::ExpressionOp, BinFun> opMap = {
			{ConditionSet::ExpressionOp::EQ, [](int64_t a, int64_t b) -> int64_t { return a == b; }},
			{ConditionSet::ExpressionOp::NE, [](int64_t a, int64_t b) -> int64_t { return a != b; }},
			{ConditionSet::ExpressionOp::LT, [](int64_t a, int64_t b) -> int64_t { return a < b; }},
			{ConditionSet::ExpressionOp::GT, [](int64_t a, int64_t b) -> int64_t { return a > b; }},
			{ConditionSet::ExpressionOp::LE, [](int64_t a, int64_t b) -> int64_t { return a <= b; }},
			{ConditionSet::ExpressionOp::GE, [](int64_t a, int64_t b) -> int64_t { return a >= b; }},
			{ConditionSet::ExpressionOp::MOD, [](int64_t a, int64_t b) { return b ? a % b : a; }},
			{ConditionSet::ExpressionOp::MUL, [](int64_t a, int64_t b) { return a * b; }},
			{ConditionSet::ExpressionOp::ADD, [](int64_t a, int64_t b) { return a + b; }},
			{ConditionSet::ExpressionOp::SUB, [](int64_t a, int64_t b) { return a - b; }},
			{ConditionSet::ExpressionOp::DIV, [](int64_t a, int64_t b) { return b ? a / b : numeric_limits<int64_t>::max(); }}
		};

		auto it = opMap.find(op);
		return (it != opMap.end() ? it->second : nullptr);
	}

	/// Map string tokens to precedence and internal operators.
	const auto CS_TOKEN_CONVERSION = map<const string, ConditionSet::ExpressionOp>{
		// Infix arithmetic multiply, divide and modulo have a higher precedence than add and subtract.
		{ "*", ConditionSet::ExpressionOp::MUL },
		{ "/", ConditionSet::ExpressionOp::DIV },
		{ "%", ConditionSet::ExpressionOp::MOD },
		// Infix arithmetic operators add and subtract have the same precedence.
		{ "+", ConditionSet::ExpressionOp::ADD },
		{ "-", ConditionSet::ExpressionOp::SUB },
		// Infix boolean equality operators have a lower precedence than their arithmetic counterparts.
		{ "==", ConditionSet::ExpressionOp::EQ },
		{ "!=", ConditionSet::ExpressionOp::NE },
		{ ">", ConditionSet::ExpressionOp::GT },
		{ "<", ConditionSet::ExpressionOp::LT },
		{ ">=", ConditionSet::ExpressionOp::GE },
		{ "<=", ConditionSet::ExpressionOp::LE },
		// Parent-type operators have a low precedence in Endless-Sky, because they are on outer parent/child sections.
		{ "and", ConditionSet::ExpressionOp::AND },
		{ "or", ConditionSet::ExpressionOp::OR },
	};


	/// Get the precedence of an operator.
	int Precedence(const ConditionSet::ExpressionOp op)
	{
		switch(op)
		{
			case ConditionSet::ExpressionOp::INVALID:
				return 9;
			case ConditionSet::ExpressionOp::LIT:
			case ConditionSet::ExpressionOp::VAR:
				return 8;
			case ConditionSet::ExpressionOp::MUL:
			case ConditionSet::ExpressionOp::DIV:
			case ConditionSet::ExpressionOp::MOD:
				return 6;
			case ConditionSet::ExpressionOp::ADD:
			case ConditionSet::ExpressionOp::SUB:
				return 5;
			case ConditionSet::ExpressionOp::EQ:
			case ConditionSet::ExpressionOp::NE:
			case ConditionSet::ExpressionOp::GT:
			case ConditionSet::ExpressionOp::LT:
			case ConditionSet::ExpressionOp::GE:
			case ConditionSet::ExpressionOp::LE:
				return 3;
			default:
				// Precedence for AND, OR
				return 0;
		}
	}


	ConditionSet::ExpressionOp ParseOperator(const string &stringToken)
	{
		auto it = CS_TOKEN_CONVERSION.find(stringToken);
		if(it != CS_TOKEN_CONVERSION.end())
			return it->second;

		// If nothing matches, then we get the default INVALID value.
		return ConditionSet::ExpressionOp::INVALID;
	}
}



ConditionSet::ConditionSet(const ConditionsStore *conditions)
{
	this->conditions = conditions;
}



// Construct and Load() at the same time.
ConditionSet::ConditionSet(const DataNode &node, const ConditionsStore *conditions)
{
	Load(node, conditions);
}



// Construct a terminal with a literal value;
ConditionSet::ConditionSet(int64_t newLiteral, const ConditionsStore *conditions)
{
	expressionOperator = ExpressionOp::LIT;
	literal = newLiteral;
	this->conditions = conditions;
}



ConditionSet &ConditionSet::operator=(const ConditionSet &&other) noexcept
{
	// Guard against self-assignment as per C++ conventions.
	if(this == &other)
		return *this;

	// The other ConditionSet might be a child of the current one, so we
	// need to keep the children safe until the end of the assignment.
	// The attribute tells the compiler that oldChildren are actually used.
	[[maybe_unused]] vector<ConditionSet> oldChildren = std::move(children);

	// Then move over all content.
	expressionOperator = other.expressionOperator;
	literal = other.literal;
	conditionName = std::move(other.conditionName);
	children = std::move(other.children);
	conditions = other.conditions;

	return *this;
}



ConditionSet &ConditionSet::operator=(const ConditionSet &other)
{
	// Guard against self-assignment as per C++ conventions.
	if(this == &other)
		return *this;

	// The other ConditionSet might be a child of the current one, so we
	// need to keep the children safe until the end of the assignment.
	// The attribute tells the compiler that oldChildren are actually used.
	[[maybe_unused]] vector<ConditionSet> oldChildren = std::move(children);

	// Then copy over all content.
	expressionOperator = other.expressionOperator;
	literal = other.literal;
	conditionName = other.conditionName;
	children = other.children;
	conditions = other.conditions;

	return *this;
}



// Load a set of conditions from the children of this node.
void ConditionSet::Load(const DataNode &node, const ConditionsStore *conditions)
{
	if(!conditions)
		throw runtime_error("Unable to Load ConditionSet without a pointer to a ConditionsStore!");
	this->conditions = conditions;

	// The top-node is always an 'and' node, without the keyword.
	expressionOperator = ExpressionOp::AND;
	ParseBooleanChildren(node);
}



// Save a set of conditions.
void ConditionSet::Save(DataWriter &out) const
{
	// Default should be AND, so if it is, then just write the subsets.
	// If this condition got optimized beyond AND, then re-add the AND by writing the current condition in full.
	if(expressionOperator == ExpressionOp::AND)
		for(const auto &child : children)
		{
			child.SaveSubset(out);
			out.Write();
		}
	else
		SaveSubset(out);
}



void ConditionSet::SaveChild(int childNr, DataWriter &out) const
{
	const ConditionSet &child = children[childNr];
	bool needBrackets = child.children.size() > 0;

	if(needBrackets)
		out.WriteToken("(");
	children[childNr].SaveSubset(out);
	if(needBrackets)
		out.WriteToken(")");
}



// Save a subset of conditions, by writing out tokens (without a newline).
void ConditionSet::SaveSubset(DataWriter &out) const
{
	string opTxt = "";
	auto it = find_if(CS_TOKEN_CONVERSION.begin(), CS_TOKEN_CONVERSION.end(),
		[this](const std::pair<const string, ConditionSet::ExpressionOp> &e) {
			return e.second == expressionOperator;
		});
	if(it != CS_TOKEN_CONVERSION.end())
		opTxt = it->first;

	switch(expressionOperator)
	{
	case ExpressionOp::INVALID:
		out.WriteToken("never");
		break;
	case ExpressionOp::VAR:
		out.WriteToken(conditionName);
		break;
	case ExpressionOp::LIT:
		out.WriteToken(literal);
		break;
	case ExpressionOp::ADD:
	case ExpressionOp::SUB:
	case ExpressionOp::MUL:
	case ExpressionOp::DIV:
	case ExpressionOp::MOD:
	case ExpressionOp::EQ:
	case ExpressionOp::NE:
	case ExpressionOp::LE:
	case ExpressionOp::GE:
	case ExpressionOp::LT:
	case ExpressionOp::GT:
		if(children.empty())
		{
			out.WriteToken("never");
			break;
		}
		SaveChild(0, out);
		for(unsigned int i = 1; i < children.size(); ++i)
		{
			out.WriteToken(opTxt);
			SaveChild(i, out);
		}
		break;
	case ExpressionOp::AND:
	case ExpressionOp::OR:
		out.Write(opTxt);
		out.BeginChild();
		for(const auto &child : children)
		{
			child.SaveSubset(out);
			out.Write();
		}
		out.EndChild();
		break;
	case ExpressionOp::NOT:
	case ExpressionOp::HAS:
		if(children.empty())
		{
			out.WriteToken("never");
			break;
		}
		out.WriteToken(opTxt);
		SaveChild(0, out);
		break;
	default:
		out.WriteToken("never");
		break;
	};
}



void ConditionSet::MakeNever()
{
	children.clear();
	expressionOperator = ExpressionOp::LIT;
	literal = 0;
}



// Check if there are any entries in this set.
// Invalid ConditionSets are also considered empty.
bool ConditionSet::IsEmpty() const
{
	// AND is the default toplevel operator for any condition, so whenever we encounter AND without any children
	// then there was nothing under the toplevel to parse, thus the condition was empty.
	return
		(expressionOperator == ExpressionOp::AND && children.size() == 0) ||
		(expressionOperator == ExpressionOp::INVALID);
}



// Check if the conditionset contains valid data
bool ConditionSet::IsValid() const
{
	return expressionOperator != ExpressionOp::INVALID;
}



bool ConditionSet::Test() const
{
	return Evaluate();
}



int64_t ConditionSet::Evaluate() const
{
	switch(expressionOperator)
	{
		case ExpressionOp::VAR:
		{
			if(!conditions)
				throw runtime_error("Unable to Evaluate ExpressionOp::VAR with condition name \"" + conditionName
					+ "\" in ConditionSet without a pointer to a ConditionsStore!");
			return conditions->Get(conditionName);
		}
		case ExpressionOp::LIT:
			return literal;
		case ExpressionOp::AND:
		{
			// An empty AND section returns true.
			if(children.empty())
				return 1;

			int64_t result = 0;
			for(const ConditionSet &child : children)
			{
				int64_t childResult = child.Evaluate();
				if(!childResult)
					return 0;
				// Assign the first non-zero result to the result variable.
				if(!result)
					result = childResult;
			}
			return result;
		}
		case ExpressionOp::OR:
			for(const ConditionSet &child : children)
			{
				int64_t childResult = child.Evaluate();
				// Return the first non-zero result.
				if(childResult)
					return childResult;
			}
			return 0;
		default:
			break;
	}

	// If we have an accumulator function and children, then let's use the accumulator on the children.
	BinFun accumulatorOp = Op(expressionOperator);
	if(accumulatorOp != nullptr && !children.empty())
		return accumulate(next(children.begin()), children.end(), children[0].Evaluate(),
			[&accumulatorOp](int64_t accumulated, const ConditionSet &b) -> int64_t {
				return accumulatorOp(accumulated, b.Evaluate());
		});

	// If we don't have an accumulator function, or no children, then return the default value.
	return 0;
}



// Get the names of the conditions that are relevant for this ConditionSet.
set<string> ConditionSet::RelevantConditions() const
{
	set<string> result;
	// Add the name from this set, if it is a VAR type operator.
	if(expressionOperator == ExpressionOp::VAR)
		result.emplace(conditionName);
	// Add the names from the children.
	for(const auto &child : children)
		for(const auto &rc : child.RelevantConditions())
			result.emplace(rc);
	return result;
}



bool ConditionSet::ParseNode(const DataNode &node)
{
	if(!conditions)
		throw runtime_error("Unable to ParseNode(full) for a ConditionSet without a pointer to a ConditionsStore!");

	const string &key = node.Token(0);
	// Special handling for 'and' and 'or' nodes.
	if(node.Size() == 1)
	{
		if(key == "and")
		{
			expressionOperator = ExpressionOp::AND;
			return ParseBooleanChildren(node);
		}
		if(key == "or")
		{
			expressionOperator = ExpressionOp::OR;
			return ParseBooleanChildren(node);
		}
	}

	// Nodes beyond this point should not have children.
	if(node.HasChildren())
		return FailParse(node, "unexpected child-nodes under toplevel");

	// Special handling for 'never', 'has' and 'not' nodes.
	if(key == "never")
	{
		if(node.Size() > 1)
			return FailParse(node, "tokens found after never keyword");

		expressionOperator = ExpressionOp::LIT;
		literal = 0;
		return true;
	}
	if(key == "has")
	{
		if(node.Size() != 2 || !DataNode::IsConditionName(node.Token(1)))
			return FailParse(node, "has keyword requires a single condition");

		// Convert has keyword directly to the variable.
		expressionOperator = ExpressionOp::VAR;
		conditionName = node.Token(1);
		return true;
	}
	if(key == "not")
	{
		if(node.Size() != 2 || !DataNode::IsConditionName(node.Token(1)))
			return FailParse(node, "not keyword requires a single condition");

		// Create `conditionName == 0` expression.
		expressionOperator = ExpressionOp::EQ;
		children.emplace_back(conditions);
		children.back().expressionOperator = ExpressionOp::VAR;
		children.back().conditionName = node.Token(1);
		children.emplace_back(0, conditions);
		return true;
	}

	int tokenNr = 0;
	if(!ParseNode(node, tokenNr))
		return false;

	return Optimize(node);
}



bool ConditionSet::ParseNode(const DataNode &node, int &tokenNr)
{
	if(!conditions)
		throw runtime_error("Unable to ParseNode(indexed) for a ConditionSet without a pointer to a ConditionsStore!");

	// Nodes beyond this point should not have children.
	if(node.HasChildren())
		return FailParse(node, "unexpected child-nodes under arithmetic expression");

	// Parse initial expression.
	if(!ParseMini(node, tokenNr))
		return FailParse();

	// Check if we are done with just one expression.
	if(tokenNr >= node.Size())
		return true;

	// If there are more tokens, then we need to have an infix operator here.
	if(!ParseFromInfix(node, tokenNr, ExpressionOp::AND))
		return FailParse();

	// Parsing from infix should have consumed and parsed all tokens.
	if(tokenNr < node.Size())
		return FailParse(node, "tokens found after parsing full expression");

	return true;
}



/// Optimize this node, this optimization also removes intermediate sections that were used for tracking brackets.
bool ConditionSet::Optimize(const DataNode &node)
{
	bool returnValue = true;
	// First optimize all the child nodes below.
	for(ConditionSet &child : children)
		returnValue &= child.Optimize(node);

	switch(expressionOperator)
	{
		case ExpressionOp::AND:
		case ExpressionOp::OR:
			// If we only have a single element, then replace the current OP/AND by its child.
			if(children.size() == 1)
				*this = children[0];

			break;

		case ExpressionOp::EQ:
		case ExpressionOp::NE:
		case ExpressionOp::LE:
		case ExpressionOp::GE:
		case ExpressionOp::LT:
		case ExpressionOp::GT:
			// TODO: Optimize boolean equality operators.
			break;

		case ExpressionOp::ADD:
		case ExpressionOp::SUB:
		case ExpressionOp::MUL:
		case ExpressionOp::DIV:
		case ExpressionOp::MOD:
			// TODO: Optimize arithmetic operators.
			break;

		case ExpressionOp::HAS:
			// Optimize away HAS, we can directly use the expression below it.
			if(children.size() == 1)
				*this = children[0];

			break;

		case ExpressionOp::NOT:
		case ExpressionOp::LIT:
		case ExpressionOp::VAR:
		case ExpressionOp::INVALID:
			break;
	}
	return returnValue;
}



bool ConditionSet::ParseBooleanChildren(const DataNode &node)
{
	if(!conditions)
		throw runtime_error("Unable to ParseBooleans in a ConditionSet without a pointer to a ConditionsStore!");

	if(!node.HasChildren())
		return FailParse(node, "child-nodes expected, found none");

	// Load all child nodes.
	for(const DataNode &child : node)
	{
		children.emplace_back(conditions);
		children.back().ParseNode(child);

		if(children.back().expressionOperator == ExpressionOp::INVALID)
			return FailParse();
	}

	return true;
}



bool ConditionSet::ParseMini(const DataNode &node, int &tokenNr)
{
	if(!conditions)
		throw runtime_error("Unable to ParseMini in a ConditionSet without a pointer to a ConditionsStore!");

	if(tokenNr >= node.Size())
		return FailParse(node, "expected terminal or sub-expression, found none");

	// Any (sub)expression should start with one of the following:
	// - an opening bracket.
	// - a literal number terminal.
	// - a condition name terminal.
	// - has keyword (but this is already handled at a higher level)
	// - not keyword (but this is already handled at a higher level)

	// Handle any first open bracket, if we had any.
	bool hadOpenBracket = false;
	if(node.Token(tokenNr) == "(")
	{
		hadOpenBracket = true;
		++tokenNr;
		if(tokenNr >= node.Size())
			return FailParse(node, "missing sub-expression and closing bracket");
	}

	if(node.IsNumber(tokenNr))
	{
		expressionOperator = ExpressionOp::LIT;
		literal = node.Value(tokenNr);
		++tokenNr;
	}
	else if(DataNode::IsConditionName(node.Token(tokenNr)))
	{
		expressionOperator = ExpressionOp::VAR;
		conditionName = node.Token(tokenNr);
		++tokenNr;
	}
	else if(node.Token(tokenNr) == "(")
	{
		// We must already have handled an open-bracket to get here; this one goes into a sub-expression.
		children.emplace_back(conditions);
		children.back().ParseMini(node, tokenNr);
	}
	else
		return FailParse(node, "expected terminal or open-bracket");

	// Keep parsing until we get to the closing bracket, if we had an open bracket.
	while(hadOpenBracket)
	{
		if(tokenNr >= node.Size())
			return FailParse(node, "missing closing bracket");
		else if(node.Token(tokenNr) == ")")
		{
			// Remove the closing bracket.
			++tokenNr;
			hadOpenBracket = false;
			// Make sure that this bracketed section gets used as a single terminal.
			if(!PushDownFull(node))
				return FailParse();
		}
		else
			// If there are more tokens, then we need to have an infix operator here.
			// Use the precedence of the AND operator, since we want to parse to the closing bracket.
			if(!ParseFromInfix(node, tokenNr, ExpressionOp::AND))
				return FailParse();
	}
	return true;
}



bool ConditionSet::ParseFromInfix(const DataNode &node, int &tokenNr, ExpressionOp parentOp)
{
	if(!conditions)
		throw runtime_error("Unable to ParseFromInfix in a ConditionSet without a pointer to a ConditionsStore!");

	// Keep on parsing until we reach an end-state (error, end-of-tokens, closing-bracket, lower precedence token)
	while(true)
	{
		// At this point, we can expect one of the following:
		// - an infix-operator
		// - a closing bracket (hopefully matching an earlier open bracket)
		// - end of the tokens.

		// Reaching the end is fine, since we should have parsed a full terminal before this one.
		// Reaching a closing bracket also means we are done (the parent should handle it).
		if(tokenNr >= node.Size() || node.Token(tokenNr) == ")")
			return true;

		// Consume token and process it.
		ExpressionOp infixOp = ParseOperator(node.Token(tokenNr));
		switch(infixOp)
		{
			case ExpressionOp::ADD:
			case ExpressionOp::SUB:
			case ExpressionOp::MUL:
			case ExpressionOp::DIV:
			case ExpressionOp::MOD:
			case ExpressionOp::EQ:
			case ExpressionOp::NE:
			case ExpressionOp::LE:
			case ExpressionOp::GE:
			case ExpressionOp::LT:
			case ExpressionOp::GT:
			{
				if(tokenNr + 1 >= node.Size())
					return FailParse(node, "expected terminal after infix operator \"" + node.Token(tokenNr) + "\"");

				// If the precedence of the new operator is less or equal than the parents operator, then let the parent handle it.
				if(Precedence(infixOp) <= Precedence(parentOp))
					return true;

				// If the precedence of the new operator is higher than the current operator, then parse the next
				// terminal into a new sub-expression.
				if((children.size() > 1) && (Precedence(expressionOperator) < Precedence(infixOp)))
				{
					if(!PushDownLast(node))
						return FailParse();
					if(!children.back().ParseFromInfix(node, tokenNr, expressionOperator))
						return FailParse();
					// The parser for the sub-expression handled everything with higher precedence. Start the loop over
					// to check what this parser needs to do next.
					continue;
				}

				// If the expression currently contains a terminal, then push it down.
				// Also push down the current expression if it has a higher or equal precedence to the new operator.
				if((children.size() == 0) || (children.size() > 1 && infixOp != expressionOperator &&
						Precedence(expressionOperator) >= Precedence(infixOp)))
					if(!PushDownFull(node))
						return FailParse();

				// If this expression contains only a single sub-expression, then we can apply the operator directly.
				if(children.size() == 1)
					expressionOperator = infixOp;

				// If we get the same operator as that we had, then let's just process it and continue the loop.
				if(infixOp == expressionOperator)
				{
					++tokenNr;
					if(!((children.emplace_back(conditions)).ParseMini(node, tokenNr)))
						return FailParse();

					continue;
				}
				return FailParse(node, "precedence confusion on infix operator");
			}
			default:
				return FailParse(node, "expected infix operator instead of \"" + node.Token(tokenNr) + "\"");
		}
	}
}



bool ConditionSet::PushDownFull(const DataNode &node)
{
	ConditionSet ce(*this);
	children.clear();
	children.push_back(std::move(ce));
	expressionOperator = ExpressionOp::AND;

	return true;
}



bool ConditionSet::PushDownLast(const DataNode &node)
{
	// Can only perform push-down if there is at least one expression to push down.
	if(children.empty())
		return FailParse(node, "cannot create sub-expression from void");

	// Store and remove the child that we want to push down.
	ConditionSet ce = std::move(children.back());
	children.pop_back();

	// Create a new last child.
	children.emplace_back(conditions);

	// Let the earlier removed child become a grandChild.
	children.back().children.push_back(std::move(ce));
	return true;
}



bool ConditionSet::FailParse()
{
	expressionOperator = ExpressionOp::INVALID;
	children.clear();
	return false;
}



bool ConditionSet::FailParse(const DataNode &node, const string &failText)
{
	node.PrintTrace("Error: " + failText + ":");
	return FailParse();
}