1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/* Minable.cpp
Copyright (c) 2016 by Michael Zahniser
Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Minable.h"
#include "DataNode.h"
#include "Effect.h"
#include "Flotsam.h"
#include "text/Format.h"
#include "GameData.h"
#include "MinableDamageDealt.h"
#include "Outfit.h"
#include "pi.h"
#include "Projectile.h"
#include "Random.h"
#include "image/SpriteSet.h"
#include "Visual.h"
#include <algorithm>
#include <cmath>
using namespace std;
Minable::Payload::Payload(const DataNode &node)
{
outfit = GameData::Outfits().Get(node.Token(1));
maxDrops = (node.Size() == 2 ? 1 : max<int>(1, node.Value(2)));
for(const DataNode &child : node)
{
const string &key = child.Token(0);
bool hasValue = child.Size() >= 2;
if(!hasValue)
child.PrintTrace("Error: Expected key to have a value:");
else if(key == "max drops")
maxDrops = max<int>(1, child.Value(1));
else if(key == "drop rate")
dropRate = max(0., min(child.Value(1), 1.));
else if(key == "toughness")
toughness = max(1., child.Value(1));
else
child.PrintTrace("Skipping unrecognized attribute:");
}
}
// Load a definition of a minable object.
void Minable::Load(const DataNode &node)
{
// Set the name of this minable, so we know it has been loaded.
if(node.Size() >= 2)
name = node.Token(1);
for(const DataNode &child : node)
{
const string &key = child.Token(0);
bool hasValue = child.Size() >= 2;
if(!hasValue)
child.PrintTrace("Error: Expected key to have a value:");
else if(key == "display name")
displayName = child.Token(1);
else if(key == "noun")
noun = child.Token(1);
else if(key == "sprite")
{
LoadSprite(child);
for(const DataNode &grand : child)
if(grand.Token(0) == "frame rate" || grand.Token(0) == "frame time")
useRandomFrameRate = false;
}
else if(key == "hull")
hull = child.Value(1);
else if(key == "random hull")
randomHull = max(0., child.Value(1));
else if(key == "payload")
payload.emplace_back(child);
else if(key == "live effect")
liveEffects.emplace_back(child);
else if(key == "explode")
{
int count = (child.Size() == 2 ? 1 : child.Value(2));
explosions[GameData::Effects().Get(child.Token(1))] += count;
}
else
child.PrintTrace("Skipping unrecognized attribute:");
}
if(displayName.empty())
displayName = Format::Capitalize(name);
if(noun.empty())
noun = "Asteroid";
}
// Calculate the expected payload value of this Minable after all outfits have been fully loaded.
void Minable::FinishLoading()
{
for(const auto &it : payload)
value += it.outfit->Cost() * it.maxDrops * it.dropRate;
}
const string &Minable::TrueName() const
{
return name;
}
const string &Minable::DisplayName() const
{
return displayName;
}
const string &Minable::Noun() const
{
return noun;
}
// Place a minable object with up to the given energy level, on a random
// orbit and a random position along that orbit.
void Minable::Place(double energy, double beltRadius)
{
// Note: there's no closed-form equation for orbital position as a function
// of time, so either I need to use Newton's method to get high precision
// (which, for a game would be overkill) or something will drift over time.
// If that drift caused the orbit to decay, that would be a problem, which
// rules out just applying gravity as a force from the system center.
// Instead, each orbit is defined by an ellipse equation:
// 1 / radius = constant * (1 + eccentricity * cos(theta)).
// The only thing that will change over time is theta, the "true anomaly."
// That way, the orbital period will only be approximate (which does not
// really matter) but the orbit itself will never decay.
// Generate random orbital parameters. Limit eccentricity so that the
// objects do not spend too much time far away and moving slowly.
eccentricity = Random::Real() * .6;
// Since an object is moving slower at apoapsis than at periapsis, it is
// more likely to start out there. So, rather than a uniform distribution of
// angles, favor ones near 180 degrees. (Note: this is not the "correct"
// equation; it is just a reasonable approximation.)
theta = Random::Real();
double curved = (pow(asin(theta * 2. - 1.) / (.5 * PI), 3.) + 1.) * .5;
theta = (eccentricity * curved + (1. - eccentricity) * theta) * 2. * PI;
// Now, pick the orbital "scale" such that, relative to the "belt radius":
// periapsis distance (scale / (1 + e)) is no closer than .4: scale >= .4 * (1 + e)
// apoapsis distance (scale / (1 - e)) is no farther than 4.: scale <= 4. * (1 - e)
// periapsis distance is no farther than 1.3: scale <= 1.3 * (1 + e)
// apoapsis distance is no closer than .8: scale >= .8 * (1 - e)
double sMin = max(.4 * (1. + eccentricity), .8 * (1. - eccentricity));
double sMax = min(4. * (1. - eccentricity), 1.3 * (1. + eccentricity));
orbitScale = (sMin + Random::Real() * (sMax - sMin)) * beltRadius;
// At periapsis, the object should have this velocity:
double maximumVelocity = (Random::Real() + 2. * eccentricity) * .5 * energy;
// That means that its angular momentum is equal to:
angularMomentum = (maximumVelocity * orbitScale) / (1. + eccentricity);
// Start the object off with a random facing angle and spin rate.
angle = Angle::Random();
spin = Angle::Random(energy) - Angle::Random(energy);
if(useRandomFrameRate)
SetFrameRate(Random::Real() * 4. * energy + 5.);
// Choose a random direction for the angle of periapsis.
rotation = Random::Real() * 2. * PI;
// Calculate the object's initial position.
radius = orbitScale / (1. + eccentricity * cos(theta));
position = radius * Point(cos(theta + rotation), sin(theta + rotation));
// Add a random amount of hull value to the object.
hull += Random::Real() * randomHull;
maxHull = hull;
}
// Move the object forward one step. If it has been reduced to zero hull, it
// will "explode" instead of moving, creating flotsam and explosion effects.
// In that case it will return false, meaning it should be deleted.
bool Minable::Move(vector<Visual> &visuals, list<shared_ptr<Flotsam>> &flotsam)
{
if(hull < 0)
{
// This object has been destroyed. Create explosions and flotsam.
double scale = .1 * Radius();
for(const auto &it : explosions)
{
for(int i = 0; i < it.second; ++i)
{
// Add a random velocity.
Point dp = (Random::Real() * scale) * Angle::Random().Unit();
visuals.emplace_back(*it.first, position + 2. * dp, velocity + dp, angle);
}
}
for(const Payload &it : payload)
{
// Each payload has a default 25% chance of surviving. This
// creates a distribution with occasional very good payoffs.
double dropRate = it.dropRate;
// Special weapons are capable of increasing this drop rate through
// prospecting.
if(prospecting > 0. && dropRate < 1.)
dropRate += (1. - dropRate) / (1. + it.toughness / prospecting);
if(dropRate <= 0.)
continue;
for(int amount = Random::Binomial(it.maxDrops, dropRate); amount > 0; amount -= Flotsam::TONS_PER_BOX)
{
flotsam.emplace_back(new Flotsam(it.outfit, min(amount, Flotsam::TONS_PER_BOX)));
flotsam.back()->Place(*this);
}
}
return false;
}
for(const auto &it : liveEffects)
if(!Random::Int(it.interval))
visuals.emplace_back(*it.effect, position, velocity, it.relativeToSystem ? Angle{position} : angle);
// Spin the object.
angle += spin;
// Advance the object forward one step.
theta += angularMomentum / (radius * radius);
radius = orbitScale / (1. + eccentricity * cos(theta));
// Calculate the new position.
Point newPosition(radius * cos(theta + rotation), radius * sin(theta + rotation));
// Calculate the velocity this object is moving at, so that its motion blur
// will be rendered correctly.
velocity = newPosition - position;
position = newPosition;
return true;
}
// Damage this object (because a projectile collided with it).
void Minable::TakeDamage(const MinableDamageDealt &damage)
{
hull -= damage.hullDamage;
prospecting += damage.prospecting;
}
double Minable::Hull() const
{
return min(1., hull / maxHull);
}
double Minable::MaxHull() const
{
return maxHull;
}
// Determine what flotsam this asteroid will create.
const vector<Minable::Payload> &Minable::GetPayload() const
{
return payload;
}
// Get the expected value of the flotsams this minable will create when destroyed.
const int64_t &Minable::GetValue() const
{
return value;
}
Minable::LiveEffect::LiveEffect(const DataNode &node)
{
interval = (node.Size() == 2 ? 1 : node.Value(2));
effect = GameData::Effects().Get(node.Token(1));
for(const DataNode &child : node)
{
if(child.Token(0) == "relative to system center")
relativeToSystem = true;
else
child.PrintTrace("Skipping unrecognized attribute:");
}
}
|