1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/* Point.cpp
Copyright (c) 2014 by Michael Zahniser
Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Point.h"
#ifdef __SSE2__
#include <cmath>
#else
#include <algorithm>
#include <cmath>
using namespace std;
#endif
Point::Point() noexcept
#ifdef __SSE2__
: v(_mm_setzero_pd())
#else
: x(0.), y(0.)
#endif
{
}
Point::Point(double x, double y) noexcept
#ifdef __SSE2__
: v(_mm_set_pd(y, x))
#else
: x(x), y(y)
#endif
{
}
// Check if the point is anything but (0, 0).
Point::operator bool() const noexcept
{
return !!*this;
}
bool Point::operator!() const noexcept
{
#ifdef __SSE2__
__m128d zero = _mm_setzero_pd();
__m128d cmp = _mm_cmpeq_pd(v, zero);
int mask = _mm_movemask_pd(cmp);
return mask == 3;
#else
return (!x & !y);
#endif
}
bool Point::operator==(const Point &other) const noexcept
{
#ifdef __SSE2__
__m128d cmp = _mm_cmpeq_pd(v, other.v);
int mask = _mm_movemask_pd(cmp);
return mask == 3;
#else
return (x == other.x) && (y == other.y);
#endif
}
bool Point::operator!=(const Point &other) const noexcept
{
return !(*this == other);
}
Point Point::operator+(const Point &point) const
{
#ifdef __SSE2__
return Point(v + point.v);
#else
return Point(x + point.x, y + point.y);
#endif
}
Point &Point::operator+=(const Point &point)
{
#ifdef __SSE2__
v += point.v;
#else
x += point.x;
y += point.y;
#endif
return *this;
}
Point Point::operator-(const Point &point) const
{
#ifdef __SSE2__
return Point(v - point.v);
#else
return Point(x - point.x, y - point.y);
#endif
}
Point &Point::operator-=(const Point &point)
{
#ifdef __SSE2__
v -= point.v;
#else
x -= point.x;
y -= point.y;
#endif
return *this;
}
Point Point::operator-() const
{
return Point() - *this;
}
Point Point::operator*(double scalar) const
{
#ifdef __SSE3__
return Point(v * _mm_loaddup_pd(&scalar));
#elif defined(__SSE2__)
__m128d scalar_vec = _mm_set1_pd(scalar);
return Point(_mm_mul_pd(v, scalar_vec));
#else
return Point(x * scalar, y * scalar);
#endif
}
Point operator*(double scalar, const Point &point)
{
#ifdef __SSE3__
return Point(point.v * _mm_loaddup_pd(&scalar));
#elif defined(__SSE2__)
__m128d scalar_vec = _mm_set1_pd(scalar);
return Point(_mm_mul_pd(point.v, scalar_vec));
#else
return Point(point.x * scalar, point.y * scalar);
#endif
}
Point &Point::operator*=(double scalar)
{
#ifdef __SSE3__
v *= _mm_loaddup_pd(&scalar);
#elif defined(__SSE2__)
__m128d scalar_vec = _mm_set1_pd(scalar);
v = _mm_mul_pd(v, scalar_vec);
return *this;
#else
x *= scalar;
y *= scalar;
#endif
return *this;
}
Point Point::operator*(const Point &other) const
{
#ifdef __SSE2__
Point result;
result.v = v * other.v;
return result;
#else
return Point(x * other.x, y * other.y);
#endif
}
Point &Point::operator*=(const Point &other)
{
#ifdef __SSE2__
v *= other.v;
#else
x *= other.x;
y *= other.y;
#endif
return *this;
}
Point Point::operator/(double scalar) const
{
#ifdef __SSE3__
return Point(v / _mm_loaddup_pd(&scalar));
#elif defined(__SSE2__)
__m128d scalar_vec = _mm_set1_pd(scalar);
return Point(_mm_div_pd(v, scalar_vec));
#else
return Point(x / scalar, y / scalar);
#endif
}
Point &Point::operator/=(double scalar)
{
#ifdef __SSE3__
v /= _mm_loaddup_pd(&scalar);
#elif defined(__SSE2__)
__m128d scalar_vec = _mm_set1_pd(scalar);
v = _mm_div_pd(v, scalar_vec);
#else
x /= scalar;
y /= scalar;
#endif
return *this;
}
void Point::Set(double x, double y)
{
#ifdef __SSE2__
v = _mm_set_pd(y, x);
#else
this->x = x;
this->y = y;
#endif
}
// Operations that treat this point as a vector from (0, 0):
double Point::Dot(const Point &point) const
{
#ifdef __SSE3__
__m128d b = v * point.v;
b = _mm_hadd_pd(b, b);
return reinterpret_cast<double &>(b);
#elif defined(__SSE2__)
__m128d mul = _mm_mul_pd(v, point.v);
double result[2];
_mm_storeu_pd(result, mul);
return result[0] + result[1];
#else
return x * point.x + y * point.y;
#endif
}
double Point::Cross(const Point &point) const
{
#ifdef __SSE3__
__m128d b = _mm_shuffle_pd(point.v, point.v, 0x01);
b *= v;
b = _mm_hsub_pd(b, b);
return reinterpret_cast<double &>(b);
#elif defined(__SSE2__)
__m128d mul = _mm_mul_pd(v, _mm_shuffle_pd(point.v, point.v, 0x1));
double result[2];
_mm_storeu_pd(result, mul);
return result[0] - result[1];
#else
return x * point.y - y * point.x;
#endif
}
double Point::Length() const
{
#ifdef __SSE3__
__m128d b = v * v;
b = _mm_hadd_pd(b, b);
b = _mm_sqrt_pd(b);
return reinterpret_cast<double &>(b);
#elif defined(__SSE2__)
__m128d mul = _mm_mul_pd(v, v);
double result[2];
_mm_storeu_pd(result, mul);
return sqrt(result[0] + result[1]);
#else
return sqrt(x * x + y * y);
#endif
}
double Point::LengthSquared() const
{
return Dot(*this);
}
Point Point::Unit() const
{
#ifdef __SSE3__
__m128d b = v * v;
b = _mm_hadd_pd(b, b);
if(!_mm_cvtsd_f64(b))
return Point(1., 0.);
b = _mm_sqrt_pd(b);
return Point(v / b);
#elif defined(__SSE2__)
double b = LengthSquared();
if(!b)
return Point(1., 0.);
return *this * (1. / sqrt(b));
#else
double b = x * x + y * y;
if(!b)
return Point(1., 0.);
b = 1. / sqrt(b);
return Point(x * b, y * b);
#endif
}
double Point::Distance(const Point &point) const
{
return (*this - point).Length();
}
double Point::DistanceSquared(const Point &point) const
{
return (*this - point).LengthSquared();
}
Point Point::Lerp(const Point &to, const double c) const
{
return *this + (to - *this) * c;
}
// Absolute value of both coordinates.
Point abs(const Point &p)
{
#ifdef __SSE2__
// Absolute value for doubles just involves clearing the sign bit.
static const __m128d sign_mask = _mm_set1_pd(-0.);
return Point(_mm_andnot_pd(sign_mask, p.v));
#else
return Point(abs(p.x), abs(p.y));
#endif
}
// Take the min of the x and y coordinates.
Point min(const Point &p, const Point &q)
{
#ifdef __SSE2__
return Point(_mm_min_pd(p.v, q.v));
#else
return Point(min(p.x, q.x), min(p.y, q.y));
#endif
}
// Take the max of the x and y coordinates.
Point max(const Point &p, const Point &q)
{
#ifdef __SSE2__
return Point(_mm_max_pd(p.v, q.v));
#else
return Point(max(p.x, q.x), max(p.y, q.y));
#endif
}
#ifdef __SSE2__
// Private constructor, using a vector.
inline Point::Point(const __m128d &v)
: v(v)
{
}
#endif
|