File: ImageBuffer.cpp

package info (click to toggle)
endless-sky 0.10.16-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 414,608 kB
  • sloc: cpp: 73,435; python: 893; xml: 666; sh: 271; makefile: 28
file content (536 lines) | stat: -rw-r--r-- 15,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/* ImageBuffer.cpp
Copyright (c) 2014 by Michael Zahniser

Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/

#include "ImageBuffer.h"

#include "../Files.h"
#include "ImageFileData.h"
#include "../Logger.h"

#include <avif/avif.h>
#include <jpeglib.h>
#include <png.h>

#include <cmath>
#include <memory>
#include <set>
#include <stdexcept>
#include <vector>

using namespace std;

namespace {
	const set<string> PNG_EXTENSIONS{".png"};
	const set<string> JPG_EXTENSIONS{".jpg", ".jpeg", ".jpe"};
	const set<string> AVIF_EXTENSIONS{".avif", ".avifs"};
	const set<string> IMAGE_EXTENSIONS = []()
	{
		set<string> extensions(PNG_EXTENSIONS);
		extensions.insert(JPG_EXTENSIONS.begin(), JPG_EXTENSIONS.end());
		extensions.insert(AVIF_EXTENSIONS.begin(), AVIF_EXTENSIONS.end());
		return extensions;
	}();
	const set<string> IMAGE_SEQUENCE_EXTENSIONS = AVIF_EXTENSIONS;

	bool ReadPNG(const filesystem::path &path, ImageBuffer &buffer, int frame);
	bool ReadJPG(const filesystem::path &path, ImageBuffer &buffer, int frame);
	int ReadAVIF(const filesystem::path &path, ImageBuffer &buffer, int frame, bool alphaPreMultiplied);
	void Premultiply(ImageBuffer &buffer, int frame, BlendingMode additive);
}



const set<string> &ImageBuffer::ImageExtensions()
{
	return IMAGE_EXTENSIONS;
}



const set<string> &ImageBuffer::ImageSequenceExtensions()
{
	return IMAGE_SEQUENCE_EXTENSIONS;
}



ImageBuffer::ImageBuffer(int frames)
	: width(0), height(0), frames(frames), pixels(nullptr)
{
}



ImageBuffer::~ImageBuffer()
{
	Clear();
}



// Set the number of frames. This must be called before allocating.
void ImageBuffer::Clear(int frames)
{
	delete [] pixels;
	pixels = nullptr;
	this->frames = frames;
}



// Allocate the internal buffer. This must only be called once for each
// image buffer; subsequent calls will be ignored.
void ImageBuffer::Allocate(int width, int height)
{
	// Do nothing if the buffer is already allocated or if any of the dimensions
	// is set to zero.
	if(pixels || !width || !height || !frames)
		return;

	pixels = new uint32_t[width * height * frames];
	this->width = width;
	this->height = height;
}



int ImageBuffer::Width() const
{
	return width;
}



int ImageBuffer::Height() const
{
	return height;
}



int ImageBuffer::Frames() const
{
	return frames;
}



const uint32_t *ImageBuffer::Pixels() const
{
	return pixels;
}



uint32_t *ImageBuffer::Pixels()
{
	return pixels;
}



const uint32_t *ImageBuffer::Begin(int y, int frame) const
{
	return pixels + width * (y + height * frame);
}



uint32_t *ImageBuffer::Begin(int y, int frame)
{
	return pixels + width * (y + height * frame);
}



void ImageBuffer::ShrinkToHalfSize()
{
	ImageBuffer result(frames);
	result.Allocate(width / 2, height / 2);

	unsigned char *begin = reinterpret_cast<unsigned char *>(pixels);
	unsigned char *out = reinterpret_cast<unsigned char *>(result.pixels);
	// Loop through every line of every frame of the buffer.
	for(int y = 0; y < result.height * frames; ++y)
	{
		unsigned char *aIt = begin + (4 * width) * (2 * y);
		unsigned char *aEnd = aIt + 4 * 2 * result.width;
		unsigned char *bIt = begin + (4 * width) * (2 * y + 1);
		for( ; aIt != aEnd; aIt += 4, bIt += 4)
		{
			for(int channel = 0; channel < 4; ++channel, ++aIt, ++bIt, ++out)
				*out = (static_cast<unsigned>(aIt[0]) + static_cast<unsigned>(bIt[0])
					+ static_cast<unsigned>(aIt[4]) + static_cast<unsigned>(bIt[4]) + 2) / 4;
		}
	}
	swap(width, result.width);
	swap(height, result.height);
	swap(pixels, result.pixels);
}



int ImageBuffer::Read(const ImageFileData &data, int frame)
{
	// First, make sure this is a supported file.
	bool isPNG = PNG_EXTENSIONS.contains(data.extension);
	bool isJPG = JPG_EXTENSIONS.contains(data.extension);
	bool isAVIF = AVIF_EXTENSIONS.contains(data.extension);

	if(!isPNG && !isJPG && !isAVIF)
		return false;

	int loaded;
	if(isPNG)
		loaded = ReadPNG(data.path, *this, frame);
	else if(isJPG)
		loaded = ReadJPG(data.path, *this, frame);
	else
		loaded = ReadAVIF(data.path, *this, frame, data.blendingMode == BlendingMode::PREMULTIPLIED_ALPHA);

	if(loaded <= 0)
		return 0;

	if(data.blendingMode != BlendingMode::PREMULTIPLIED_ALPHA)
	{
		if(isPNG || (isJPG && data.blendingMode == BlendingMode::ADDITIVE))
			Premultiply(*this, frame, data.blendingMode);
	}
	return loaded;
}



namespace {
	void ReadPNGInput(png_structp pngStruct, png_bytep outBytes, png_size_t byteCountToRead)
	{
		static_cast<iostream *>(png_get_io_ptr(pngStruct))->read(reinterpret_cast<char *>(outBytes), byteCountToRead);
	}

	bool ReadPNG(const filesystem::path &path, ImageBuffer &buffer, int frame)
	{
		// Open the file, and make sure it really is a PNG.
		shared_ptr<iostream> file = Files::Open(path.string());
		if(!file)
			return false;

		// Set up libpng.
		png_struct *png = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
		if(!png)
			return false;

		png_info *info = png_create_info_struct(png);
		if(!info)
		{
			png_destroy_read_struct(&png, nullptr, nullptr);
			return false;
		}

		if(setjmp(png_jmpbuf(png)))
		{
			png_destroy_read_struct(&png, &info, nullptr);
			return false;
		}

		png_set_read_fn(png, file.get(), ReadPNGInput);
		png_set_sig_bytes(png, 0);

		png_read_info(png, info);
		int width = png_get_image_width(png, info);
		int height = png_get_image_height(png, info);
		// If the buffer is not yet allocated, allocate it.
		try {
			buffer.Allocate(width, height);
		}
		catch(const bad_alloc &)
		{
			png_destroy_read_struct(&png, &info, nullptr);
			const string message = "Failed to allocate contiguous memory for \"" + path.string() + "\"";
			Logger::LogError(message);
			throw runtime_error(message);
		}
		// Make sure this frame's dimensions are valid.
		if(!width || !height || width != buffer.Width() || height != buffer.Height())
		{
			png_destroy_read_struct(&png, &info, nullptr);
			string message = "Skipped processing \"" + path.string() + "\":\n\tAll image frames must have equal ";
			if(width && width != buffer.Width())
				Logger::LogError(message + "width: expected " + to_string(buffer.Width()) + " but was " + to_string(width));
			if(height && height != buffer.Height())
				Logger::LogError(message + "height: expected " + to_string(buffer.Height()) + " but was " + to_string(height));
			return false;
		}

		// Adjust settings to make sure the result will be an RGBA file.
		int colorType = png_get_color_type(png, info);
		int bitDepth = png_get_bit_depth(png, info);

		if(colorType == PNG_COLOR_TYPE_PALETTE)
			png_set_palette_to_rgb(png);
		if(png_get_valid(png, info, PNG_INFO_tRNS))
			png_set_tRNS_to_alpha(png);
		if(colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8)
			png_set_expand_gray_1_2_4_to_8(png);
		if(bitDepth == 16)
		{
#if PNG_LIBPNG_VER >= 10504
			png_set_scale_16(png);
#else
			png_set_strip_16(png);
#endif
		}
		if(bitDepth < 8)
			png_set_packing(png);
		if(colorType == PNG_COLOR_TYPE_PALETTE || colorType == PNG_COLOR_TYPE_RGB
				|| colorType == PNG_COLOR_TYPE_GRAY)
			png_set_add_alpha(png, 0xFFFF, PNG_FILLER_AFTER);
		if(colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA)
			png_set_gray_to_rgb(png);
		// Let libpng handle any interlaced image decoding.
		png_set_interlace_handling(png);
		png_read_update_info(png, info);

		// Read the file.
		vector<png_byte *> rows(height, nullptr);
		for(int y = 0; y < height; ++y)
			rows[y] = reinterpret_cast<png_byte *>(buffer.Begin(y, frame));

		png_read_image(png, &rows.front());

		// Clean up. The file will be closed automatically.
		png_destroy_read_struct(&png, &info, nullptr);

		return true;
	}



	bool ReadJPG(const filesystem::path &path, ImageBuffer &buffer, int frame)
	{
		string data = Files::Read(path);
		if(data.empty())
			return false;

		jpeg_decompress_struct cinfo;
		struct jpeg_error_mgr jerr;
		cinfo.err = jpeg_std_error(&jerr);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
		jpeg_create_decompress(&cinfo);
#pragma GCC diagnostic pop

		jpeg_mem_src(&cinfo, reinterpret_cast<const unsigned char *>(data.data()), data.size());
		jpeg_read_header(&cinfo, true);
		cinfo.out_color_space = JCS_EXT_RGBA;

		// MAYBE: Reading in lots of images in a 32-bit process gets really hairy using the standard approach due to
		// contiguous memory layout requirements. Investigate using an iterative loading scheme for large images.
		jpeg_start_decompress(&cinfo);
		int width = cinfo.image_width;
		int height = cinfo.image_height;
		// If the buffer is not yet allocated, allocate it.
		try {
			buffer.Allocate(width, height);
		}
		catch(const bad_alloc &)
		{
			jpeg_destroy_decompress(&cinfo);
			const string message = "Failed to allocate contiguous memory for \"" + path.string() + "\"";
			Logger::LogError(message);
			throw runtime_error(message);
		}
		// Make sure this frame's dimensions are valid.
		if(!width || !height || width != buffer.Width() || height != buffer.Height())
		{
			jpeg_destroy_decompress(&cinfo);
			string message = "Skipped processing \"" + path.string() + "\":\t\tAll image frames must have equal ";
			if(width && width != buffer.Width())
				Logger::LogError(message + "width: expected " + to_string(buffer.Width()) + " but was " + to_string(width));
			if(height && height != buffer.Height())
				Logger::LogError(message + "height: expected " + to_string(buffer.Height()) + " but was " + to_string(height));
			return false;
		}

		// Read the file.
		vector<JSAMPLE *> rows(height, nullptr);
		for(int y = 0; y < height; ++y)
			rows[y] = reinterpret_cast<JSAMPLE *>(buffer.Begin(y, frame));

		while(height)
			height -= jpeg_read_scanlines(&cinfo, &rows.front() + cinfo.output_scanline, height);

		jpeg_finish_decompress(&cinfo);
		jpeg_destroy_decompress(&cinfo);

		return true;
	}



	// Read an AVIF file, and return the number of frames. This might be
	// greater than the number of frames in the file due to frame time corrections.
	// Since sprite animation properties are not visible here, we take the shortest frame
	// duration, and treat that as our time unit. Every other frame is repeated
	// based on how much longer its duration is compared to this unit.
	// TODO: If animation properties are exposed here, we can have custom presentation
	// logic that avoids duplicating the frames.
	int ReadAVIF(const filesystem::path &path, ImageBuffer &buffer, int frame, bool alphaPreMultiplied)
	{
		unique_ptr<avifDecoder, void(*)(avifDecoder *)> decoder(avifDecoderCreate(), avifDecoderDestroy);
		if(!decoder)
		{
			Logger::LogError("Could not create avif decoder");
			return 0;
		}
		// Maintenance note: this is where decoder defaults should be overwritten (codec, exif/xmp, etc.)

		string data = Files::Read(path);
		avifResult result = avifDecoderSetIOMemory(decoder.get(), reinterpret_cast<const uint8_t *>(data.c_str()),
			data.size());
		if(result != AVIF_RESULT_OK)
		{
			Logger::LogError("Could not read file: " + path.generic_string());
			return 0;
		}

		result = avifDecoderParse(decoder.get());
		if(result != AVIF_RESULT_OK)
		{
			Logger::LogError(string("Failed to decode image: ") + avifResultToString(result));
			return 0;
		}
		// Generic image information is now available (width, height, depth, color profile, metadata, alpha, etc.),
		// as well as image count and frame timings.
		if(!decoder->imageCount)
			return 0;

		// Find the shortest frame duration.
		double frameTimeUnit = -1;
		avifImageTiming timing;
		for(int i = 0; i < decoder->imageCount; ++i)
		{
			result = avifDecoderNthImageTiming(decoder.get(), i, &timing);
			if(result != AVIF_RESULT_OK)
			{
				Logger::LogError("Could not get image timing for '" + path.generic_string() + "': " + avifResultToString(result));
				return 0;
			}
			if(frameTimeUnit < 0 || (frameTimeUnit > timing.duration && timing.duration))
				frameTimeUnit = timing.duration;
		}
		// Based on this unit, we can calculate how many times each frame is repeated.
		vector<size_t> repeats(decoder->imageCount);
		size_t bufferFrameCount = 0;
		for(size_t i = 0; i < static_cast<size_t>(decoder->imageCount); ++i)
		{
			result = avifDecoderNthImageTiming(decoder.get(), i, &timing);
			if(result != AVIF_RESULT_OK)
			{
				Logger::LogError("Could not get image timing for \"" + path.generic_string() + "\": " + avifResultToString(result));
				return 0;
			}
			repeats[i] = round(timing.duration / frameTimeUnit);
			bufferFrameCount += repeats[i];
		}

		// Now that we know the buffer's frame count, we can allocate the memory for it.
		// If this is an image sequence, the preconfigured frame count is wrong.
		try {
			if(bufferFrameCount > 1)
				buffer.Clear(bufferFrameCount);
			buffer.Allocate(decoder->image->width, decoder->image->height);
		}
		catch(const bad_alloc &)
		{
			const string message = "Failed to allocate contiguous memory for \"" + path.generic_string() + "\"";
			Logger::LogError(message);
			throw runtime_error(message);
		}
		if(static_cast<unsigned>(buffer.Width()) != decoder->image->width
			|| static_cast<unsigned>(buffer.Height()) != decoder->image->height)
		{
			Logger::LogError("Invalid dimensions for \"" + path.generic_string() + "\"");
			return 0;
		}

		// Load each image in the sequence.
		int avifFrameIndex = 0;
		size_t bufferFrame = 0;
		while(avifDecoderNextImage(decoder.get()) == AVIF_RESULT_OK)
		{
			// Ignore frames with insufficient duration.
			if(!repeats[avifFrameIndex])
				continue;

			avifRGBImage image;
			avifRGBImageSetDefaults(&image, decoder->image);
			image.depth = 8; // Force 8-bit color depth.
			image.alphaPremultiplied = alphaPreMultiplied;
			image.rowBytes = image.width * avifRGBImagePixelSize(&image);
			image.pixels = reinterpret_cast<uint8_t *>(buffer.Begin(0, frame + bufferFrame));

			result = avifImageYUVToRGB(decoder->image, &image);
			if(result != AVIF_RESULT_OK)
			{
				Logger::LogError("Conversion from YUV failed for \"" + path.generic_string() + "\": " + avifResultToString(result));
				return bufferFrame;
			}

			// Now copy the image in the buffer to match frame timings.
			for(size_t i = 1; i < repeats[avifFrameIndex]; ++i)
			{
				uint8_t *end = reinterpret_cast<uint8_t *>(buffer.Begin(0, frame + bufferFrame + 1));
				uint8_t *dest = reinterpret_cast<uint8_t *>(buffer.Begin(0, frame + bufferFrame + i));
				std::copy(image.pixels, end, dest);
			}
			bufferFrame += repeats[avifFrameIndex];

			++avifFrameIndex;
		}

		if(avifFrameIndex != decoder->imageCount || bufferFrame != bufferFrameCount)
			Logger::LogError("Skipped corrupted frames for \"" + path.generic_string() + "\"");

		return bufferFrameCount;
	}



	void Premultiply(ImageBuffer &buffer, int frame, BlendingMode blend)
	{
		for(int y = 0; y < buffer.Height(); ++y)
		{
			uint32_t *it = buffer.Begin(y, frame);

			for(uint32_t *end = it + buffer.Width(); it != end; ++it)
			{
				uint64_t value = *it;
				uint64_t alpha = (value & 0xFF000000) >> 24;

				uint64_t red = (((value & 0xFF0000) * alpha) / 255) & 0xFF0000;
				uint64_t green = (((value & 0xFF00) * alpha) / 255) & 0xFF00;
				uint64_t blue = (((value & 0xFF) * alpha) / 255) & 0xFF;

				value = red | green | blue;
				if(blend == BlendingMode::HALF_ADDITIVE)
					alpha >>= 2;
				if(blend != BlendingMode::ADDITIVE)
					value |= (alpha << 24);

				*it = static_cast<uint32_t>(value);
			}
		}
	}
}