1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/* Mask.cpp
Copyright (c) 2014 by Michael Zahniser
Endless Sky is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
Endless Sky is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "Mask.h"
#include "ImageBuffer.h"
#include "../Logger.h"
#include <algorithm>
#include <cmath>
#include <limits>
using namespace std;
namespace {
// Trace out outlines from an image frame.
void Trace(const ImageBuffer &image, int frame, vector<vector<Point>> &raw, const string &fileName)
{
const uint32_t on = 0xFF000000;
const int width = image.Width();
const int height = image.Height();
const int numPixels = width * height;
const uint32_t *begin = image.Pixels() + frame * numPixels;
auto LogError = [width, height, fileName](string reason)
{
Logger::LogError("Unable to create mask for " + to_string(width) + "x" + to_string(height)
+ " px image " + fileName + ": " + std::move(reason));
};
raw.clear();
auto hasOutline = vector<bool>(numPixels, false);
vector<int> directions;
vector<Point> points;
int start = 0;
while(start < numPixels)
{
directions.clear();
points.clear();
// Find a pixel with some renderable color data (i.e. a non-zero alpha component).
for( ; start < numPixels; ++start)
{
if(begin[start] & on)
{
// If this pixel is not part of an existing outline, trace it.
if(!hasOutline[start])
break;
// Otherwise, advance to the next transparent pixel.
// (any non-transparent pixels will belong to the existing outline).
for(++start; start < numPixels; ++start)
if(!(begin[start] & on))
break;
}
}
if(start >= numPixels)
{
if(raw.empty())
LogError("all pixels were transparent!");
return;
}
// Direction kernel for obtaining the 8 nearest neighbors, beginning with "N" and
// moving clockwise (since the frame data starts in the top-left and moves L->R).
static const int step[][2] = {
{0, -1}, { 1, -1}, { 1, 0}, { 1, 1},
{0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
};
// Convert from a direction index to the desired pixel.
const int off[] = {
-width, -width + 1, 1, width + 1,
width, width - 1, -1, -width - 1,
};
// Loop until we come back to the start, recording the directions
// that outline each pixel (rather than the actual pixel itself).
int d = 7;
// The current image pixel, in index coordinates.
int pos = start;
// The current image pixel, in (X, Y) coordinates.
int p[] = {pos % width, pos / width};
do {
hasOutline[pos] = true;
int firstD = d;
// The image pixel being inspected, in XY coords.
int next[] = {p[0], p[1]};
bool isAlone = false;
while(true)
{
next[0] = p[0] + step[d][0];
next[1] = p[1] + step[d][1];
// First, ensure an offset in this direction would access a valid pixel index.
if(next[0] >= 0 && next[0] < width && next[1] >= 0 && next[1] < height)
// If that pixel has color data, then add it to the outline.
if(begin[pos + off[d]] & on)
break;
// Otherwise, advance to the next direction.
d = (d + 1) & 7;
// If this point is alone, bail out.
if(d == firstD)
{
isAlone = true;
LogError("lone point found at (" + to_string(p[0]) + ", " + to_string(p[1]) + ")");
break;
}
}
if(isAlone)
break;
// Advance the pixels and store the direction traveled.
p[0] = next[0];
p[1] = next[1];
pos += off[d];
directions.push_back(d);
// Rotate the direction backward ninety degrees.
d = (d + 6) & 7;
// Loop until we are back where we started.
} while(pos != start);
// At least 4 points are needed to outline a non-transparent pixel.
if(directions.size() < 4)
continue;
// Interpolate outline points from directions and alpha values, rather than just the pixel's XY.
points.reserve(directions.size());
pos = start;
p[0] = pos % width;
p[1] = pos / width;
int prev = directions.back();
for(int next : directions)
{
// Face outside by rotating direction backward ninety degrees.
int out0 = (prev + 6) & 7;
int out1 = (next + 6) & 7;
// Determine the subpixel shift, where higher alphas will shift the estimate outward.
// (MAYBE: use an actual alpha gradient for dir & magnitude, or remove altogether.)
static const double scale[] = { 1., 1. / sqrt(2.) };
Point shift = Point(
step[out0][0] * scale[out0 & 1] + step[out1][0] * scale[out1 & 1],
step[out0][1] * scale[out0 & 1] + step[out1][1] * scale[out1 & 1]).Unit();
shift *= ((begin[pos] & on) >> 24) * (1. / 255.) - .5;
points.push_back(shift + Point(p[0], p[1]));
p[0] += step[next][0];
p[1] += step[next][1];
pos += off[next];
prev = next;
}
raw.push_back(points);
}
}
void SmoothAndCenter(vector<Point> &raw, Point size)
{
// Smooth out the outline by averaging neighboring points.
Point prev = raw.back();
for(Point &p : raw)
{
prev += p;
prev -= size;
// Since we'll always be using these sprites at 50% scale, do that
// scaling here.
prev *= .25;
swap(prev, p);
}
}
// Distance from a point to a line, squared.
double DistanceSquared(Point p, Point a, Point b)
{
// Convert to a coordinate system where a is the origin.
p -= a;
b -= a;
double length = b.LengthSquared();
if(length)
{
// Find out how far along the line the tangent to p intersects.
double u = b.Dot(p) / length;
// If it is beyond one of the endpoints, use that endpoint.
p -= max(0., min(1., u)) * b;
}
return p.LengthSquared();
}
void Simplify(const vector<Point> &p, int first, int last, vector<Point> &result)
{
// Find the most divergent point.
double dmax = 0.;
int imax = 0;
for(int i = first + 1; true; ++i)
{
if(static_cast<unsigned>(i) == p.size())
i = 0;
if(i == last)
break;
double d = DistanceSquared(p[i], p[first], p[last]);
// Enforce symmetry by using y position as a tiebreaker rather than
// just the order in the list.
if(d > dmax || (d == dmax && p[i].Y() > p[imax].Y()))
{
dmax = d;
imax = i;
}
}
// If the most divergent point is close enough to the outline, stop.
if(dmax < 1.)
return;
// Recursively simplify the lines to both sides of that point.
Simplify(p, first, imax, result);
result.push_back(p[imax]);
Simplify(p, imax, last, result);
}
// Simplify the given outline using the Ramer-Douglas-Peucker algorithm.
vector<Point> Simplify(const vector<Point> &raw)
{
// Out of all the top-most and bottom-most pixels, find the ones that
// are closest to the center of the image.
int top = -1;
int bottom = -1;
for(int i = 0; static_cast<unsigned>(i) < raw.size(); ++i)
{
double ax = fabs(raw[i].X());
double y = raw[i].Y();
if(top == -1)
top = bottom = i;
else if(y > raw[bottom].Y() || (y == raw[bottom].Y() && ax < fabs(raw[bottom].X())))
bottom = i;
else if(y < raw[top].Y() || (y == raw[top].Y() && ax < fabs(raw[top].X())))
top = i;
}
auto result = vector<Point>{};
if(top != bottom)
{
result.push_back(raw[top]);
Simplify(raw, top, bottom, result);
result.push_back(raw[bottom]);
Simplify(raw, bottom, top, result);
}
return result;
}
// Find the radius of the object.
double ComputeRadius(const vector<Point> &outline)
{
double radius = 0.;
for(const Point &p : outline)
radius = max(radius, p.LengthSquared());
return sqrt(radius);
}
}
// Construct a mask from the alpha channel of an RGBA-formatted image.
void Mask::Create(const ImageBuffer &image, int frame, const string &fileName)
{
outlines.clear();
radius = 0.;
vector<vector<Point>> raw;
Trace(image, frame, raw, fileName);
if(raw.empty())
return;
outlines.reserve(raw.size());
for(auto &edge : raw)
{
SmoothAndCenter(edge, Point(image.Width(), image.Height()));
auto outline = Simplify(edge);
// Skip any outlines that have no area.
if(outline.size() <= 2)
continue;
radius = max(radius, ComputeRadius(outline));
outlines.push_back(std::move(outline));
outlines.back().shrink_to_fit();
}
outlines.shrink_to_fit();
}
// Check whether a mask was successfully generated from the image.
bool Mask::IsLoaded() const
{
return !outlines.empty();
}
// Check if this mask intersects the given line segment (from sA to vA). If
// it does, return the fraction of the way along the segment where the
// intersection occurs. The sA should be relative to this object's center.
// If this object contains the given point, the return value is 0. If there
// is no collision, the return value is 1.
double Mask::Collide(Point sA, Point vA, Angle facing) const
{
// Bail out if we're too far away to possibly be touching.
double distance = sA.Length();
if(!IsLoaded() || distance > radius + vA.Length())
return 1.;
// Bail out even if the segment doesn't touch a circle of 'radius'.
if(DistanceSquared(Point(), sA, sA + vA) > (radius * radius))
return 1.;
// Rotate into the mask's frame of reference.
sA = (-facing).Rotate(sA);
vA = (-facing).Rotate(vA);
// If this point is contained within the mask, a ray drawn out from it will
// intersect the mask an even number of times. If that ray coincides with an
// edge, ignore that edge, and count all segments as closed at the start and
// open at the end to avoid double-counting.
// For simplicity, use a ray pointing straight downwards. A segment then
// intersects only if its x coordinates span the point's coordinates.
if(distance <= radius && Contains(sA))
return 0.;
return Intersection(sA, vA);
}
// Check whether the mask contains the given point.
bool Mask::Contains(Point point, Angle facing) const
{
if(!IsLoaded() || point.Length() > radius)
return false;
// Rotate into the mask's frame of reference.
return Contains((-facing).Rotate(point));
}
// Find out whether this object is touching a ring defined by the given
// inner and outer ranges.
bool Mask::WithinRing(Point point, Angle facing, double inner, double outer) const
{
// Bail out if the object is too far away to possibly be touched.
if(!IsLoaded() || inner > point.Length() + radius || outer < point.Length() - radius)
return false;
// Rotate into the mask's frame of reference.
point = (-facing).Rotate(point);
// For efficiency, compare to range^2 instead of range.
inner *= inner;
outer *= outer;
// Determine if the ring contains any of the outlines of the mask.
for(auto &&outline : outlines)
for(auto &&p : outline)
{
double pSquared = p.DistanceSquared(point);
if(pSquared < outer && pSquared > inner)
return true;
}
// While a ring might not contain any outlines of the mask, it may be
// located entirely inside of the mask. This should still count as the
// mask being within the ring. This can only be the case if the
// entire ring is smaller than the radius of the mask and the center
// of the ring is within the mask.
return outer < radius && Contains(point);
}
// Find out how close the given point is to the mask.
double Mask::Range(Point point, Angle facing) const
{
double range = numeric_limits<double>::infinity();
if(!IsLoaded())
return range;
// Rotate into the mask's frame of reference.
point = (-facing).Rotate(point);
if(Contains(point))
return 0.;
for(auto &&outline : outlines)
for(auto &&p : outline)
range = min(range, p.Distance(point));
return range;
}
double Mask::Radius() const
{
return radius;
}
// Get the individual outlines that comprise this mask.
const vector<vector<Point>> &Mask::Outlines() const
{
return outlines;
}
Mask Mask::operator*(Point scale) const
{
Mask newMask = *this;
newMask.radius = 0.;
for(auto &outline : newMask.outlines)
{
for(Point &p : outline)
p *= scale;
double radius = ComputeRadius(outline);
if(radius > newMask.radius)
newMask.radius = radius;
}
return newMask;
}
Mask operator*(Point scale, const Mask &mask)
{
return mask * scale;
}
double Mask::Intersection(Point sA, Point vA) const
{
// Keep track of the closest intersection point found.
double closest = 1.;
for(auto &&outline : outlines)
{
Point prev = outline.back();
for(auto &&next : outline)
{
// Check if there is an intersection. (If not, the cross would be 0.) If
// there is, handle it only if it is a point where the segment is
// entering the polygon rather than exiting it (i.e. cross > 0).
Point vB = next - prev;
double cross = vB.Cross(vA);
if(cross > 0.)
{
Point vS = prev - sA;
double uB = vA.Cross(vS);
double uA = vB.Cross(vS);
// If the intersection occurs somewhere within this segment of the
// outline, find out how far along the query vector it occurs and
// remember it if it is the closest so far.
if((uB >= 0.) & (uB < cross) & (uA >= 0.))
closest = min(closest, uA / cross);
}
prev = next;
}
}
return closest;
}
bool Mask::Contains(Point point) const
{
if(!IsLoaded())
return false;
// If this point is contained within the mask, a ray drawn out from it will
// intersect the mask an odd number of times. If that ray coincides with an
// edge, ignore that edge, and count all segments as closed at the start and
// open at the end to avoid double-counting.
// For simplicity, use a ray pointing straight downwards. A segment then
// intersects only if its x coordinates span the point's coordinates.
// Compute the number of intersections across all outlines, not just one, as the
// outlines may be nested (i.e. holes) or discontinuous (multiple separate shapes).
int intersections = 0;
for(auto &&outline : outlines)
{
Point prev = outline.back();
for(auto &&next : outline)
{
if(prev.X() != next.X())
if((prev.X() <= point.X()) == (point.X() < next.X()))
{
double y = prev.Y() + (next.Y() - prev.Y()) *
(point.X() - prev.X()) / (next.X() - prev.X());
intersections += (y >= point.Y());
}
prev = next;
}
}
// If the number of intersections is odd, the point is within the mask.
return (intersections & 1);
}
|