1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/**
* @file agemoea_test.cpp
* @author Satyam Shukla
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
using namespace ens;
using namespace ens::test;
using namespace std;
// NOTE: we can't use ENS_TEST_TYPES for AGEMOEA, because AGEMOEA uses
// solve(), which is not implemented for FP16.
/**
* Checks if low <= value <= high. Used by MOEADFonsecaFlemingTest.
*
* @param value The value being checked.
* @param low The lower bound.
* @param high The upper bound.
* @param roundoff To round off precision.
* @tparam The type of elements in the population set.
* @return true if value lies in the range [low, high].
* @return false if value does not lie in the range [low, high].
*/
template<typename ElemType>
bool IsInBounds(const ElemType& value,
const ElemType& low,
const ElemType& high,
const ElemType& roundoff)
{
return !(value < (low - roundoff)) && !((high + roundoff) < value);
}
/**
* Optimize for the Schaffer N.1 function using AGE-MOEA optimizer.
*/
TEMPLATE_TEST_CASE("AGEMOEASchafferN1Test", "[AGEMOEA]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
SchafferFunctionN1<TestType> sch;
const double lowerBound = -1000;
const double upperBound = 1000;
const ElemType expectedLowerBound = 0;
const ElemType expectedUpperBound = 2;
AGEMOEA opt(20, 500, 0.6, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(sch.objectiveA) ObjectiveTypeA;
typedef decltype(sch.objectiveB) ObjectiveTypeB;
// We allow a few trials in case of poor convergence.
bool success = false;
for (size_t trial = 0; trial < 3; ++trial)
{
TestType coords = sch.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = sch.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
ElemType val = arma::as_scalar(paretoSet.slice(solutionIdx));
if (!IsInBounds<ElemType>(val, expectedLowerBound, expectedUpperBound,
ElemType(0.1)))
{
allInRange = false;
break;
}
}
if (allInRange)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
/**
* Optimize for the Schaffer N.1 function using AGE-MOEA optimizer.
*/
TEMPLATE_TEST_CASE("AGEMOEASchafferN1TestVectorBounds", "[AGEMOEA]",
ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
// This test can be a little flaky, so we try it a few times.
SchafferFunctionN1<TestType> sch;
const arma::vec lowerBound = {-1000};
const arma::vec upperBound = {1000};
const ElemType expectedLowerBound = 0;
const ElemType expectedUpperBound = 2;
AGEMOEA opt(20, 500, 0.6, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(sch.objectiveA) ObjectiveTypeA;
typedef decltype(sch.objectiveB) ObjectiveTypeB;
bool success = false;
for (size_t trial = 0; trial < 3; ++trial)
{
TestType coords = sch.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = sch.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
ElemType val = arma::as_scalar(paretoSet.slice(solutionIdx));
if (!IsInBounds<ElemType>(val, expectedLowerBound, expectedUpperBound,
ElemType(0.1)))
{
allInRange = false;
break;
}
}
if (allInRange)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
/**
* Optimize for the Fonseca Fleming function using AGE-MOEA optimizer.
*/
TEMPLATE_TEST_CASE("AGEMOEAFonsecaFlemingTest", "[AGEMOEA]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
FonsecaFlemingFunction<TestType> fon;
const double lowerBound = -4;
const double upperBound = 4;
const ElemType lbExpected = -1 / sqrt(ElemType(3));
const ElemType ubExpected = 1 / sqrt(ElemType(3));
AGEMOEA opt(20, 500, 0.6, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(fon.objectiveA) ObjectiveTypeA;
typedef decltype(fon.objectiveB) ObjectiveTypeB;
bool success = false;
for (size_t trial = 0; trial < 6; ++trial)
{
TestType coords = fon.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = fon.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
const TestType& solution = paretoSet.slice(solutionIdx);
const ElemType valX = arma::as_scalar(solution(0));
const ElemType valY = arma::as_scalar(solution(1));
const ElemType valZ = arma::as_scalar(solution(2));
if (!IsInBounds<ElemType>(valX, lbExpected, ubExpected, ElemType(0.3)) ||
!IsInBounds<ElemType>(valY, lbExpected, ubExpected, ElemType(0.3)) ||
!IsInBounds<ElemType>(valZ, lbExpected, ubExpected, ElemType(0.3)))
{
allInRange = false;
break;
}
}
if (allInRange == true)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
/**
* Optimize for the Fonseca Fleming function using AGE-MOEA optimizer.
*/
TEMPLATE_TEST_CASE("AGEMOEAFonsecaFlemingTestVectorBounds", "[AGEMOEA]",
ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
FonsecaFlemingFunction<TestType> fon;
const arma::vec lowerBound = {-4, -4, -4};
const arma::vec upperBound = {4, 4, 4};
const ElemType lbExpected = -1 / sqrt(ElemType(3));
const ElemType ubExpected = 1 / sqrt(ElemType(3));
AGEMOEA opt(20, 300, 0.6, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(fon.objectiveA) ObjectiveTypeA;
typedef decltype(fon.objectiveB) ObjectiveTypeB;
bool success = false;
for (size_t trial = 0; trial < 6; ++trial)
{
TestType coords = fon.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = fon.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
const TestType& solution = paretoSet.slice(solutionIdx);
const ElemType valX = arma::as_scalar(solution(0));
const ElemType valY = arma::as_scalar(solution(1));
const ElemType valZ = arma::as_scalar(solution(2));
if (!IsInBounds<ElemType>(valX, lbExpected, ubExpected, ElemType(0.3)) ||
!IsInBounds<ElemType>(valY, lbExpected, ubExpected, ElemType(0.3)) ||
!IsInBounds<ElemType>(valZ, lbExpected, ubExpected, ElemType(0.3)))
{
allInRange = false;
}
}
if (allInRange)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
TEMPLATE_TEST_CASE("AGEMOEAZDTONETest", "[AGEMOEA]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
//! Parameters taken from original ZDT Paper.
ZDT1<TestType> zdt1(100);
const double lowerBound = 0;
const double upperBound = 1;
AGEMOEA opt(20, 300, 0.6, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(zdt1.objectiveF1) ObjectiveTypeA;
typedef decltype(zdt1.objectiveF2) ObjectiveTypeB;
const size_t trials = 8;
for (size_t trial = 0; trial < trials; ++trial)
{
TestType coords = zdt1.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives =
zdt1.GetObjectives();
opt.Optimize(objectives, coords);
//! Refer the ZDT_ONE implementation for g objective implementation.
//! The optimal g value is taken from the docs of ZDT_ONE.
size_t numVariables = coords.size();
ElemType sum = arma::accu(coords(arma::span(1, numVariables - 1), 0));
const ElemType g = 1 + 9 * sum / (static_cast<ElemType>(numVariables - 1));
if (trial < trials - 1 && g != Approx(1).margin(ElemType(0.99)))
continue;
REQUIRE(g == Approx(1).margin(ElemType(0.99)));
break;
}
}
/**
* Check if the final population lies in the optimal region in variable space.
*
* @param paretoSet The final population in variable space.
*/
template<typename CubeType>
bool AVariableBoundsCheck(const CubeType& paretoSet)
{
typedef typename CubeType::elem_type ElemType;
const arma::Mat<ElemType> regions{
{0.0, 0.182228780, 0.4093136748, 0.6183967944, 0.8233317983},
{0.0830015349, 0.2577623634, 0.4538821041, 0.6525117038, 0.8518328654}};
ElemType notInBounds = 0;
for (size_t pointIdx = 0; pointIdx < paretoSet.n_slices; ++pointIdx)
{
const arma::Mat<ElemType>& point = paretoSet.slice(pointIdx);
const ElemType firstVariable = point(0, 0);
const bool notInRegion0 = !IsInBounds<ElemType>(firstVariable,
regions(0, 0), regions(1, 0), 3e-2);
const bool notInRegion1 = !IsInBounds<ElemType>(firstVariable,
regions(0, 1), regions(1, 1), 3e-2);
const bool notInRegion2 = !IsInBounds<ElemType>(firstVariable,
regions(0, 2), regions(1, 2), 3e-2);
const bool notInRegion3 = !IsInBounds<ElemType>(firstVariable,
regions(0, 3), regions(1, 3), 3e-2);
const bool notInRegion4 = !IsInBounds<ElemType>(firstVariable,
regions(0, 4), regions(1, 4), 3e-2);
if (notInRegion0 && notInRegion1 && notInRegion2 && notInRegion3 &&
notInRegion4)
{
notInBounds++;
}
}
notInBounds = notInBounds / paretoSet.n_slices;
return notInBounds < ElemType(0.80);
}
/**
* Test AGEMOEA against the third problem of ZDT Test Suite. ZDT-3 is a 30
* variable-2 objective problem with disconnected Pareto Fronts.
*/
TEMPLATE_TEST_CASE("AGEMOEADIRICHLETZDT3Test", "[AGEMOEAD]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
//! Parameters taken from original ZDT Paper.
ZDT3<TestType> zdt3(300);
const double lowerBound = 0;
const double upperBound = 1;
AGEMOEA opt(50, 500, 0.8, 20, 1e-6, 20, lowerBound, upperBound);
typedef decltype(zdt3.objectiveF1) ObjectiveTypeA;
typedef decltype(zdt3.objectiveF2) ObjectiveTypeB;
bool success = true;
for (size_t tries = 0; tries < 2; tries++)
{
TestType coords = zdt3.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives =
zdt3.GetObjectives();
arma::Cube<ElemType> paretoFront, finalPopulation;
opt.Optimize(objectives, coords, paretoFront, finalPopulation);
success = AVariableBoundsCheck(finalPopulation);
if (success)
break;
}
REQUIRE(success);
}
|