1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/**
* @file fasta_test.cpp
* @author Ryan Curtin
*
* Tests for FASTA (Fast Adaptive Shrinkage/Thresholding Algorithm).
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#if defined(ENS_USE_COOT)
#include <armadillo>
#include <bandicoot>
#endif
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
using namespace arma;
using namespace ens;
using namespace ens::test;
TEMPLATE_TEST_CASE("FASTASimpleTest", "[FASTA]", ENS_TEST_TYPES)
{
// Make sure that we can get a decent result with no g(x) constraint.
FASTA<L1Penalty> fasta(L1Penalty(0.0), 5000);
GeneralizedRosenbrockFunction f(20);
FunctionTest<GeneralizedRosenbrockFunction, TestType>(fasta, f,
100 * Tolerances<TestType>::Obj,
100 * Tolerances<TestType>::Coord);
}
TEMPLATE_TEST_CASE("FASTASphereFunctionTest", "[FASTA]", ENS_ALL_TEST_TYPES,
ENS_SPARSE_TEST_TYPES)
{
// The sphere function optimizes to the origin anyway, so the L1 penalty does
// not affect the result.
FASTA<L1Penalty> fasta(L1Penalty(0.1));
FunctionTest<SphereFunction, TestType>(fasta,
Tolerances<TestType>::Obj,
Tolerances<TestType>::Coord);
}
// FASTA has step size issues on the Wood function with arma::fmat, so we don't
// test with that type.
TEMPLATE_TEST_CASE("FASTAWoodFunctionTest", "[FASTA]", arma::mat)
{
// Set the L1 constraint to be sufficiently large that the final solution is
// just inside the ball.
FASTA<L1Constraint> fasta(L1Constraint(5.1));
fasta.Tolerance() = 1e-10; // This converges too early otherwise.
// Optimization can sometimes diverge, so we allow a few trials.
FunctionTest<WoodFunction, TestType>(fasta,
Tolerances<TestType>::LargeObj,
Tolerances<TestType>::LargeCoord,
5);
}
TEMPLATE_TEST_CASE("FASTALogisticRegressionFunctionTest", "[FASTA]",
ENS_TEST_TYPES) // low precision is too flaky for this test
{
FASTA<L1Penalty> fasta(L1Penalty(0.001));
LogisticRegressionFunctionTest<TestType>(fasta,
Tolerances<TestType>::LRTrainAcc,
Tolerances<TestType>::LRTestAcc,
5);
}
// Check that maxIterations does anything.
TEST_CASE("FASTAMaxIterationsTest", "[FASTA]")
{
FASTA<L1Penalty> fasta1(L1Penalty(0.001)), fasta2(L1Penalty(0.001));
fasta1.MaxIterations() = 5;
fasta2.MaxIterations() = 100;
BoothFunction f;
mat coordinates1 = f.GetInitialPoint<mat>();
mat coordinates2 = coordinates1;
fasta1.Optimize(f, coordinates1);
fasta2.Optimize(f, coordinates2);
// The second optimization should have proceeded further.
REQUIRE(f.Evaluate(coordinates1) >= f.Evaluate(coordinates2));
}
// Check that the step size estimate works at least reasonably.
TEST_CASE("FASTAStepSizeEstimateTest", "[FASTA]")
{
QuadraticFunction f;
FASTA<L1Penalty> fasta1;
mat coordinates1 = f.GetInitialPoint<mat>();
fasta1.Optimize(f, coordinates1);
// Check the step size to ensure that it's reasonable. If the guess is
// perfect, then the step size will be 10 / L, where L = 1.
REQUIRE(fasta1.MaxStepSize() >= 1.0);
REQUIRE(fasta1.MaxStepSize() <= 11.0);
}
// Check what happens when 0 estimate trials are used.
TEST_CASE("FASTAZeroEstimateTrialsTest", "[FASTA]")
{
QuadraticFunction f;
FASTA<L1Penalty> fasta1;
REQUIRE_THROWS(fasta1 = FASTA<L1Penalty>(1000, 1e-10, 50, 2.0, 10, true, 0));
FASTA<L1Penalty> fasta2;
fasta2.EstimateTrials() = 0;
mat coordinates = f.GetInitialPoint<mat>();
REQUIRE_THROWS(fasta2.Optimize(f, coordinates));
}
// Check what happens when the step size is manually set to something much
// smaller than the estimate would give.
TEST_CASE("FASTATooSmallManualStepSizeTest", "[FASTA]")
{
QuadraticFunction f;
FASTA<L1Penalty> fasta(L1Penalty(0.0), 1000, 1e-10, 50, 2.0, 10, false, 10,
1e-10);
mat coordinates = f.GetInitialPoint<mat>();
fasta.Optimize(f, coordinates);
// We should be far away from the optimum.
REQUIRE(std::abs(coordinates[0]) >= 1.0);
}
// Check that we can converge even when a gigantic manual maximum step size is
// specified.
TEST_CASE("FASTATooLargeManualStepSizeTest", "[FASTA]")
{
// Use a huge step size. We should still successfully optimize the function.
FASTA<L1Penalty> fasta(L1Penalty(0.0), 10000, 1e-10, 50, 2.0, 10, false, 10,
10000.0);
GeneralizedRosenbrockFunction f(20);
FunctionTest<GeneralizedRosenbrockFunction, mat>(fasta, f);
}
// Check that we can't specify a lineSearchLookback of 0.
TEST_CASE("FASTAInvalidLineSearchLookbackTest", "[FASTA]")
{
QuadraticFunction f;
FASTA<L1Penalty> fasta1;
REQUIRE_THROWS(fasta1 = FASTA<L1Penalty>(1000, 1e-10, 50, 2.0, 0));
FASTA<L1Penalty> fasta2;
fasta2.LineSearchLookback() = 0;
mat coordinates = f.GetInitialPoint<mat>();
REQUIRE_THROWS(fasta2.Optimize(f, coordinates));
}
|