1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/**
* @file frankwolfe_test.cpp
* @author Chenzhe Diao
* @author Marcus Edel
*
* Test file for Frank-Wolfe type optimizer.
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#if defined(ENS_USE_COOT)
#include <armadillo>
#include <bandicoot>
#endif
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
#include "test_types.hpp"
using namespace arma;
using namespace ens;
using namespace ens::test;
/**
* Simple test of Orthogonal Matching Pursuit algorithm.
*/
TEMPLATE_TEST_CASE("FrankWolfe_OMP", "[FrankWolfe]", arma::mat)
{
typedef typename TestType::elem_type ElemType;
const int k = 5;
TestType B1 = arma::eye<TestType>(3, 3);
TestType B2 = 0.1 * arma::randn<TestType>(3, k);
// The dictionary is input as columns of A.
TestType A = join_horiz(B1, B2);
// Vector to be sparsely approximated.
arma::Col<ElemType> b = {1.0, 1.0, 0.0};
FuncSq f(A, b);
ConstrLpBallSolver linearConstrSolver(1);
UpdateSpan updateRule;
OMP s(linearConstrSolver, updateRule);
TestType coordinates = zeros<TestType>(k + 3, 1);
ElemType result = s.Optimize(f, coordinates);
const double margin = Tolerances<TestType>::Coord;
REQUIRE(result == Approx(0.0).margin(margin));
REQUIRE(coordinates(0) - 1 == Approx(0.0).margin(margin));
REQUIRE(coordinates(1) - 1 == Approx(0.0).margin(margin));
REQUIRE(coordinates(2) == Approx(0.0).margin(margin));
for (int ii = 0; ii < k; ++ii)
{
REQUIRE(coordinates[ii + 3] == Approx(0.0).margin(margin));
}
}
/**
* Simple test of Orthogonal Matching Pursuit with regularization.
*/
TEMPLATE_TEST_CASE("FrankWolfe_RegularizedOMP", "[FrankWolfe]", arma::mat)
{
typedef typename TestType::elem_type ElemType;
const int k = 10;
TestType B1 = 0.1 * arma::eye<TestType>(k, k);
TestType B2 = 100 * arma::randn<TestType>(k, k);
// The dictionary is input as columns of A.
TestType A = join_horiz(B1, B2);
// Vector to be sparsely approximated.
arma::Col<ElemType> b(k, arma::fill::zeros);
b(0) = 1;
b(1) = 1;
arma::Col<ElemType> lambda(A.n_cols);
for (size_t ii = 0; ii < A.n_cols; ii++)
lambda(ii) = norm(A.col(ii), 2);
FuncSq f(A, b);
ConstrLpBallSolver linearConstrSolver(1, lambda);
UpdateSpan updateRule;
OMP s(linearConstrSolver, updateRule);
TestType coordinates = zeros<TestType>(2 * k, 1);
ElemType result = s.Optimize(f, coordinates);
REQUIRE(result == Approx(0.0).margin(Tolerances<TestType>::Coord));
}
/**
* Simple test of Orthogonal Matching Pursuit with support prune.
*/
TEMPLATE_TEST_CASE("FrankWolfe_PruneSupportOMP", "[FrankWolfe]", arma::mat)
{
typedef typename TestType::elem_type ElemType;
// The dictionary is input as columns of A.
const int k = 3;
TestType B1 = { { 1.0, 0.0, 1.0 },
{ 0.0, 1.0, 1.0 },
{ 0.0, 0.0, 1.0 } };
TestType B2 = arma::randu<TestType>(k, k);
// The dictionary is input as columns of A.
TestType A = join_horiz(B1, B2);
// Vector to be sparsely approximated.
arma::Col<ElemType> b = { 1.0, 1.0, 0.0 };
FuncSq f(A, b);
ConstrLpBallSolver linearConstrSolver(1);
UpdateSpan updateRule(true);
OMP s(linearConstrSolver, updateRule);
TestType coordinates = zeros<TestType>(k + 3, 1);
ElemType result = s.Optimize(f, coordinates);
REQUIRE(result == Approx(0.0).margin(Tolerances<TestType>::Coord));
}
/**
* Simple test of sparse soluton in atom domain with atom norm constraint.
*/
TEMPLATE_TEST_CASE("FrankWolfe_AtomNormConstraint", "[FrankWolfe]",
arma::mat)
{
typedef typename TestType::elem_type ElemType;
const int k = 5;
TestType B1 = arma::eye<TestType>(3, 3);
TestType B2 = 0.1 * arma::randn<TestType>(3, k);
// The dictionary is input as columns of A.
TestType A = join_horiz(B1, B2);
// Vector to be sparsely approximated.
arma::Col<ElemType> b = { 1.0, 1.0, 0.0 };
FuncSq f(A, b);
ConstrLpBallSolver linearConstrSolver(1);
UpdateFullCorrection updateRule(2, 0.2);
FrankWolfe<ConstrLpBallSolver, UpdateFullCorrection>
s(linearConstrSolver, updateRule);
TestType coordinates = zeros<TestType>(k + 3, 1);
ElemType result = s.Optimize(f, coordinates);
REQUIRE(result == Approx(0.0).margin(Tolerances<TestType>::Coord));
}
/**
* A very simple test of classic Frank-Wolfe algorithm.
* The constrained domain used is unit lp ball.
*/
TEMPLATE_TEST_CASE("FrankWolfe_Classic", "[FrankWolfe]", arma::mat)
{
typedef typename TestType::elem_type ElemType;
TestFuncFW<TestType> f;
double p = 2; // Constraint set is unit lp ball.
ConstrLpBallSolver linearConstrSolver(p);
UpdateClassic updateRule;
FrankWolfe<ConstrLpBallSolver, UpdateClassic>
s(linearConstrSolver, updateRule);
TestType coordinates = arma::randu<TestType>(3, 1);
ElemType result = s.Optimize(f, coordinates);
REQUIRE(result == Approx(0.0).margin(Tolerances<TestType>::Obj));
const double coordTol = Tolerances<TestType>::Coord;
REQUIRE(coordinates(0) - 0.1 == Approx(0.0).margin(coordTol));
REQUIRE(coordinates(1) - 0.2 == Approx(0.0).margin(coordTol));
REQUIRE(coordinates(2) - 0.3 == Approx(0.0).margin(coordTol));
}
/**
* Exactly the same problem with ClassicFW.
* The update step performs a line search now.
* It converges much faster.
*/
TEMPLATE_TEST_CASE("FrankWolfe_LineSearch", "[FrankWolfe]",
ENS_FULLPREC_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
typedef typename ForwardType<TestType>::brow RowType;
TestFuncFW<TestType> f;
double p = 2; // Constraint set is unit lp ball.
ConstrLpBallSolverType<RowType> linearConstrSolver(p);
UpdateLineSearch updateRule;
FrankWolfe<decltype(linearConstrSolver), UpdateLineSearch>
s(linearConstrSolver, updateRule);
TestType coordinates = randu<TestType>(3);
ElemType result = s.Optimize(f, coordinates);
REQUIRE(result == Approx(0.0).margin(Tolerances<TestType>::Obj));
const double coordTol = Tolerances<TestType>::Coord;
REQUIRE(coordinates(0) - 0.1 == Approx(0.0).margin(coordTol));
REQUIRE(coordinates(1) - 0.2 == Approx(0.0).margin(coordTol));
REQUIRE(coordinates(2) - 0.3 == Approx(0.0).margin(coordTol));
}
|