1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/**
* @file lrsdp_test.cpp
* @author Ryan Curtin
* @author Marcus Edel
* @author Conrad Sanderson
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_types.hpp"
using namespace arma;
using namespace ens;
using namespace ens::test;
/**
* Create a Lovasz-Theta initial point.
*/
template<typename MatType>
void CreateLovaszThetaInitialPoint(const MatType& edges,
MatType& coordinates)
{
// Get the number of vertices in the problem.
const size_t vertices = max(max(edges)) + 1;
const size_t m = edges.n_cols + 1;
float r = 0.5 + sqrt(0.25 + 2 * m);
if (ceil(r) > vertices)
r = vertices; // An upper bound on the dimension.
coordinates.set_size(vertices, ceil(r));
// Now we set the entries of the initial matrix according to the formula given
// in Section 4 of Monteiro and Burer.
for (size_t i = 0; i < vertices; ++i)
{
for (size_t j = 0; j < ceil(r); ++j)
{
if (i == j)
coordinates(i, j) = sqrt(1.0 / r) + sqrt(1.0 / (vertices * m));
else
coordinates(i, j) = sqrt(1.0 / (vertices * m));
}
}
}
/**
* Prepare an LRSDP object to solve the Lovasz-Theta SDP in the manner detailed
* in Monteiro + Burer 2004. The list of edges in the graph must be given; that
* is all that is necessary to set up the problem. A matrix which will contain
* initial point coordinates should be given also.
*/
template<typename MatType>
void SetupLovaszTheta(const MatType& edges,
LRSDP<SDP<MatType>>& lovasz,
typename ForwardType<MatType>::bvec& lambda)
{
// Get the number of vertices in the problem.
const size_t vertices = max(max(edges)) + 1;
// C = -(e e^T) = -ones().
lovasz.SDP().C().ones(vertices, vertices);
lovasz.SDP().C() *= -1;
// b_0 = 1; else = 0.
lovasz.SDP().SparseB().zeros(edges.n_cols + 1);
lovasz.SDP().SparseB()[0] = 1;
// A_0 = I_n.
lovasz.SDP().SparseA()[0].eye(vertices, vertices);
// A_ij only has ones at (i, j) and (j, i) and 0 elsewhere.
for (size_t i = 0; i < edges.n_cols; ++i)
{
lovasz.SDP().SparseA()[i + 1].zeros(vertices, vertices);
lovasz.SDP().SparseA()[i + 1](edges(0, i), edges(1, i)) = 1.;
lovasz.SDP().SparseA()[i + 1](edges(1, i), edges(0, i)) = 1.;
}
// Set the Lagrange multipliers right.
lambda.ones(edges.n_cols + 1);
lambda *= -1;
lambda[0] = -((typename MatType::elem_type) vertices);
}
/**
* johnson8-4-4.co test case for Lovasz-Theta LRSDP.
* See Monteiro and Burer 2004.
*/
TEMPLATE_TEST_CASE("Johnson844LovaszThetaSDP", "[LRSDP]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
// Load the edges.
TestType edges;
if (edges.load("data/johnson8-4-4.csv", csv_ascii) == false)
{
FAIL("couldn't load data");
return;
}
edges = edges.t();
// The LRSDP itself and the initial point.
TestType coordinates;
CreateLovaszThetaInitialPoint(edges, coordinates);
LRSDP<SDP<TestType>> lovasz(edges.n_cols + 1, 0, coordinates);
typedef typename ForwardType<TestType>::bvec VecType;
VecType lambda;
SetupLovaszTheta(edges, lovasz, lambda);
double sigma = 10;
ElemType finalValue = lovasz.Optimize(coordinates, lambda, sigma);
// Final value taken from Monteiro + Burer 2004.
REQUIRE(finalValue == Approx(-14.0).epsilon(Tolerances<TestType>::Obj));
// Now ensure that all the constraints are satisfied.
TestType rrt = coordinates * trans(coordinates);
REQUIRE(trace(rrt) == Approx(1.0).epsilon(Tolerances<TestType>::Obj));
// All those edge constraints...
for (size_t i = 0; i < edges.n_cols; ++i)
{
REQUIRE(rrt(edges(0, i), edges(1, i)) ==
Approx(0.0).margin(100 * Tolerances<TestType>::Obj));
REQUIRE(rrt(edges(1, i), edges(0, i)) ==
Approx(0.0).margin(100 * Tolerances<TestType>::Obj));
}
}
/**
* Create an unweighted graph laplacian from the edges.
*/
template<typename ElemType>
void CreateSparseGraphLaplacian(const Mat<ElemType>& edges,
SpMat<ElemType>& laplacian)
{
// Get the number of vertices in the problem.
const size_t vertices = max(max(edges)) + 1;
laplacian.zeros(vertices, vertices);
for (size_t i = 0; i < edges.n_cols; ++i)
{
laplacian(edges(0, i), edges(1, i)) = ElemType(-1);
laplacian(edges(1, i), edges(0, i)) = ElemType(-1);
}
for (size_t i = 0; i < vertices; ++i)
{
laplacian(i, i) = -accu(laplacian.row(i));
}
}
TEMPLATE_TEST_CASE("ErdosRenyiRandomGraphMaxCutSDP", "[LRSDP]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
// Load the edges.
TestType edges;
if (edges.load("data/erdosrenyi-n100.csv", csv_ascii) == false)
{
FAIL("couldn't load data");
return;
}
edges = edges.t();
SpMat<ElemType> laplacian;
CreateSparseGraphLaplacian(edges, laplacian);
float r = 0.5 + sqrt(0.25 + 2 * edges.n_cols);
if (ceil(r) > laplacian.n_rows)
r = laplacian.n_rows;
// initialize coordinates to a feasible point
TestType coordinates(laplacian.n_rows, ceil(r));
coordinates.zeros();
for (size_t i = 0; i < coordinates.n_rows; ++i)
{
coordinates(i, i % coordinates.n_cols) = ElemType(1);
}
LRSDP<SDP<SpMat<ElemType>>> maxcut(laplacian.n_rows, 0, coordinates);
maxcut.SDP().C() = laplacian;
maxcut.SDP().C() *= -1.; // need to minimize the negative
maxcut.SDP().SparseB().ones(laplacian.n_rows);
for (size_t i = 0; i < laplacian.n_rows; ++i)
{
maxcut.SDP().SparseA()[i].zeros(laplacian.n_rows, laplacian.n_rows);
maxcut.SDP().SparseA()[i](i, i) = ElemType(1);
}
const ElemType finalValue = maxcut.Optimize(coordinates);
const TestType rrt = coordinates * trans(coordinates);
for (size_t i = 0; i < laplacian.n_rows; ++i)
{
REQUIRE(rrt(i, i) == Approx(1.0).epsilon(Tolerances<TestType>::Obj));
}
// Final value taken by solving with Mosek
REQUIRE(finalValue ==
Approx(-3672.7).epsilon(100 * Tolerances<TestType>::Coord));
}
/*
* Test a nuclear norm minimization SDP.
*
* Specifically, fix an unknown m x n matrix X. Our goal is to recover X from p
* measurements of X, where the i-th measurement is of the form
*
* b_i = dot(A_i, X)
*
* where the A_i's have iid entries from Normal(0, 1/p). We do this by solving
* the the following semi-definite program
*
* min ||X||_* subj to dot(A_i, X) = b_i, i=1,...,p
*
* where ||X||_* denotes the nuclear norm (sum of singular values) of X. The
* equivalent SDP is
*
* min tr(W1) + tr(W2) : [ W1, X ; X', W2 ] is PSD,
* dot(A_i, X) = b_i, i = 1, ..., p
*
* For more details on matrix sensing and nuclear norm minimization, see
*
* Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear
* Norm Minimization.
* Benjamin Recht, Maryam Fazel, Pablo Parrilo.
* SIAM Review 2010.
*
*/
TEMPLATE_TEST_CASE("GaussianMatrixSensingSDP", "[LRSDP]", ENS_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
TestType Xorig, A;
// read the unknown matrix X and the measurement matrices A_i in
if (Xorig.load("data/sensing_X.csv", csv_ascii) == false)
{
FAIL("couldn't load data");
}
if (A.load("data/sensing_A.csv", csv_ascii) == false)
{
FAIL("couldn't load data");
}
const size_t m = Xorig.n_rows;
const size_t n = Xorig.n_cols;
const size_t p = A.n_rows;
assert(A.n_cols == m * m);
Col<ElemType> b(p);
for (size_t i = 0; i < p; ++i)
{
const TestType Ai = reshape(A.row(i), n, m);
b(i) = dot(trans(Ai), Xorig);
}
float r = 0.5 + sqrt(0.25 + 2 * p);
if (ceil(r) > m + n)
r = m + n;
TestType coordinates;
coordinates.eye(m + n, ceil(r));
LRSDP<SDP<SpMat<ElemType>>> sensing(0, p, coordinates, 15);
sensing.SDP().C().eye(m + n, m + n);
sensing.SDP().DenseB() = 2. * b;
const span blockRows(0, m - 1);
const span blockCols(m, m + n - 1);
for (size_t i = 0; i < p; ++i)
{
const TestType Ai = reshape(A.row(i), n, m);
sensing.SDP().DenseA()[i].zeros(m + n, m + n);
sensing.SDP().DenseA()[i](blockRows, blockCols) = trans(Ai);
sensing.SDP().DenseA()[i](blockCols, blockRows) = Ai;
}
ElemType finalValue = sensing.Optimize(coordinates);
REQUIRE(finalValue == Approx(44.7550132629).epsilon(
Tolerances<TestType>::LargeObj));
const TestType rrt = coordinates * trans(coordinates);
for (size_t i = 0; i < p; ++i)
{
const TestType Ai = reshape(A.row(i), n, m);
const ElemType measurement = dot(trans(Ai), rrt(blockRows, blockCols));
// Custom tolerances because floats can do very bad here.
const ElemType eps = std::is_same<ElemType, float>::value ? 0.1 : 0.001;
REQUIRE(measurement == Approx(b(i)).epsilon(eps));
}
// check matrix recovery
const ElemType err = norm(Xorig - rrt(blockRows, blockCols), "fro") /
norm(Xorig, "fro");
REQUIRE(err == Approx(0.0).margin(10 * Tolerances<TestType>::LargeObj));
}
|