1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/**
* @file nsga2_test.cpp
* @author Sayan Goswami
* @author Nanubala Gnana Sai
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#if defined(ENS_USE_COOT)
#include <armadillo>
#include <bandicoot>
#endif
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
#include "test_types.hpp"
using namespace ens;
using namespace ens::test;
using namespace std;
/**
* Checks if low <= value <= high. Used by NSGA2FonsecaFlemingTest.
*
* @param value The value being checked.
* @param low The lower bound.
* @param high The upper bound.
* @tparam The type of elements in the population set.
* @return true if value lies in the range [low, high].
* @return false if value does not lie in the range [low, high].
*/
template<typename ElemType>
bool IsInBounds(
const ElemType& value, const ElemType& low, const ElemType& high)
{
ElemType roundoff = ElemType(0.1);
return !(value < (low - roundoff)) && !((high + roundoff) < value);
}
TEMPLATE_TEST_CASE("NSGA2_SchafferFunctionN1ElemTypeBounds", "[NSGA2]",
ENS_ALL_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
SchafferFunctionN1<TestType> sch;
const double lowerBound = -1000;
const double upperBound = 1000;
const ElemType expectedLowerBound = 0;
const ElemType expectedUpperBound = 2;
NSGA2 opt(
20, 300, 0.5, 0.5, 1e-3, 1e-6, lowerBound, upperBound);
typedef decltype(sch.objectiveA) ObjectiveTypeA;
typedef decltype(sch.objectiveB) ObjectiveTypeB;
// We allow a few trials in case of poor convergence.
bool success = false;
for (size_t trial = 0; trial < 3; ++trial)
{
TestType coords = sch.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives =
sch.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
ElemType val = arma::as_scalar(paretoSet.slice(solutionIdx));
if (!IsInBounds<ElemType>(val, expectedLowerBound, expectedUpperBound))
{
allInRange = false;
break;
}
}
if (allInRange)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
TEMPLATE_TEST_CASE("NSGA2_SchafferFunctionN1VectorBounds", "[NSGA2]",
ENS_ALL_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
// This test can be a little flaky, so we try it a few times.
SchafferFunctionN1<TestType> sch;
const arma::vec lowerBound = {-1000};
const arma::vec upperBound = {1000};
const ElemType expectedLowerBound = 0;
const ElemType expectedUpperBound = 2;
NSGA2 opt(
20, 300, 0.5, 0.5, 1e-3, 1e-6, lowerBound, upperBound);
typedef decltype(sch.objectiveA) ObjectiveTypeA;
typedef decltype(sch.objectiveB) ObjectiveTypeB;
bool success = false;
for (size_t trial = 0; trial < 3; ++trial)
{
TestType coords = sch.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = sch.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices;
++solutionIdx)
{
ElemType val = arma::as_scalar(paretoSet.slice(solutionIdx));
if (!IsInBounds<ElemType>(val, expectedLowerBound, expectedUpperBound))
{
allInRange = false;
break;
}
}
if (allInRange)
{
success = true;
break;
}
}
REQUIRE(success == true);
}
/**
* Optimize for the Fonseca Fleming function using NSGA-II optimizer.
*/
TEMPLATE_TEST_CASE("NSGA2_FonsecaFlemingFunctionElemTypeBounds", "[NSGA2]",
ENS_ALL_CPU_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
FonsecaFlemingFunction<TestType> fon;
const double lowerBound = -4;
const double upperBound = 4;
const double tolerance = 1e-6;
const double strength = 1e-4;
const ElemType expectedLowerBound = -1 / sqrt(ElemType(3));
const ElemType expectedUpperBound = 1 / sqrt(ElemType(3));
NSGA2 opt(20, 300, 0.6, 0.3, strength, tolerance, lowerBound, upperBound);
typedef decltype(fon.objectiveA) ObjectiveTypeA;
typedef decltype(fon.objectiveB) ObjectiveTypeB;
TestType coords = fon.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = fon.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices; ++solutionIdx)
{
const TestType solution = paretoSet.slice(solutionIdx);
ElemType valX = arma::as_scalar(solution(0));
ElemType valY = arma::as_scalar(solution(1));
ElemType valZ = arma::as_scalar(solution(2));
if (!IsInBounds<ElemType>(valX, expectedLowerBound, expectedUpperBound) ||
!IsInBounds<ElemType>(valY, expectedLowerBound, expectedUpperBound) ||
!IsInBounds<ElemType>(valZ, expectedLowerBound, expectedUpperBound))
{
allInRange = false;
break;
}
}
REQUIRE(allInRange);
}
/**
* Optimize for the Fonseca Fleming function using NSGA-II optimizer.
*/
TEMPLATE_TEST_CASE("NSGA2_FonsecaFlemingFunctionVectorBounds", "[NSGA2]",
ENS_ALL_CPU_TEST_TYPES)
{
typedef typename TestType::elem_type ElemType;
FonsecaFlemingFunction<TestType> fon;
const arma::vec lowerBound = {-4, -4, -4};
const arma::vec upperBound = {4, 4, 4};
const double tolerance = 1e-6;
const double strength = 1e-4;
const ElemType expectedLowerBound = -1 / sqrt(ElemType(3));
const ElemType expectedUpperBound = 1 / sqrt(ElemType(3));
NSGA2 opt(20, 300, 0.6, 0.3, strength, tolerance, lowerBound, upperBound);
typedef decltype(fon.objectiveA) ObjectiveTypeA;
typedef decltype(fon.objectiveB) ObjectiveTypeB;
TestType coords = fon.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives = fon.GetObjectives();
arma::Cube<ElemType> paretoFront, paretoSet;
opt.Optimize(objectives, coords, paretoFront, paretoSet);
bool allInRange = true;
for (size_t solutionIdx = 0; solutionIdx < paretoSet.n_slices; ++solutionIdx)
{
const TestType solution = paretoSet.slice(solutionIdx);
ElemType valX = arma::as_scalar(solution(0));
ElemType valY = arma::as_scalar(solution(1));
ElemType valZ = arma::as_scalar(solution(2));
if (!IsInBounds<ElemType>(valX, expectedLowerBound, expectedUpperBound) ||
!IsInBounds<ElemType>(valY, expectedLowerBound, expectedUpperBound) ||
!IsInBounds<ElemType>(valZ, expectedLowerBound, expectedUpperBound))
{
allInRange = false;
break;
}
}
REQUIRE(allInRange);
}
/**
* Test against the first problem of ZDT Test Suite. ZDT-1 is a 30
* variable-2 objective problem with a convex Pareto Front.
*
* NOTE: For the sake of runtime, only ZDT-1 is tested against the
* algorithm. Others have been tested separately.
*/
TEMPLATE_TEST_CASE("NSGA2_ZDTONEFunction", "[NSGA2]", ENS_ALL_CPU_TEST_TYPES)
{
//! Parameters taken from original ZDT Paper.
ZDT1<TestType> zdt1(100);
const double lowerBound = 0;
const double upperBound = 1;
const double tolerance = 1e-6;
const double mutationRate = 1e-2;
const double crossoverRate = 0.8;
const double strength = 1e-4;
NSGA2 opt(100, 250, crossoverRate, mutationRate, strength,
tolerance, lowerBound, upperBound);
typedef decltype(zdt1.objectiveF1) ObjectiveTypeA;
typedef decltype(zdt1.objectiveF2) ObjectiveTypeB;
TestType coords = zdt1.GetInitialPoint();
std::tuple<ObjectiveTypeA, ObjectiveTypeB> objectives =
zdt1.GetObjectives();
opt.Optimize(objectives, coords);
// Refer to the zdt1 implementation for g objective implementation.
// The optimal g value is taken from the docs of zdt1.
size_t numVariables = coords.size();
double sum = arma::accu(coords(arma::span(1, numVariables - 1), 0));
double g = 1. + 9. * sum / (static_cast<double>(numVariables - 1));
REQUIRE(g == Approx(1.0).margin(0.99));
}
|