File: pop_cmaes_test.cpp

package info (click to toggle)
ensmallen 3.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,952 kB
  • sloc: cpp: 44,963; sh: 186; makefile: 35
file content (111 lines) | stat: -rw-r--r-- 3,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
 * @file pop_cmaes_test.cpp
 * @author Benjami Parellada
 *
 * Tests for the POP_CMAES class, including IPOP CMA-ES and BIPOP CMA-ES.
 *
 * ensmallen is free software; you may redistribute it and/or modify it under
 * the terms of the 3-clause BSD license.  You should have received a copy of
 * the 3-clause BSD license along with ensmallen.  If not, see
 * http://www.opensource.org/licenses/BSD-3-Clause for more information.
 */
#if defined(ENS_USE_COOT)
  #include <armadillo>
  #include <bandicoot>
#endif
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
#include "test_types.hpp"

using namespace ens;
using namespace ens::test;

// We can't test CMA-ES on low-precision floating point types because it uses
// chol() internally---which is not supported for low-precision.

/**
 * Run IPOP-CMA-ES on the Rastrigin function and check whether the optimizer
 * converges to the expected solution within tolerance limits.
 */
TEMPLATE_TEST_CASE("IPOP_CMAES_RastriginFunction", "[POPCMAES]", ENS_TEST_TYPES)
{
  RastriginFunction f(2);
  BoundaryBoxConstraint<TestType> b(-10, 10);

  IPOP_CMAES<FullSelection, BoundaryBoxConstraint<TestType>> ipopcmaes(
    15, // lambda
    b, // transformationPolicy
    32, // batchSize
    10000, // maxIterations
    Tolerances<TestType>::Obj, // tolerance
    FullSelection(), // selectionPolicy
    1.0, // stepSize
    2.0, // populationFactor
    3, // maxRestarts
    1e6 // maxFunctionEvaluations
  );

  TestType initialPoint = f.GetInitialPoint<TestType>();
  TestType expectedResult = f.GetFinalPoint<TestType>();

  MultipleTrialOptimizerTest(f, ipopcmaes, initialPoint, expectedResult,
      Tolerances<TestType>::LargeCoord, f.GetFinalObjective(),
      Tolerances<TestType>::LargeObj, 5);
}

/**
 * Run IPOP-CMA-ES on the Rosenbrock function and check whether the optimizer
 * converges to the expected solution within tolerance limits.
 */
TEMPLATE_TEST_CASE("BIPOP_CMAES_RosenbrockFunction", "[POPCMAES]",
    ENS_FULLPREC_TEST_TYPES)
{
  BoundaryBoxConstraint<TestType> b(0, 2);

  BIPOP_CMAES<FullSelection, BoundaryBoxConstraint<TestType>> bipopcmaes(
    15, // lambda
    b, // transformationPolicy
    32, // batchSize
    10000, // maxIterations
    Tolerances<TestType>::Obj, // tolerance
    FullSelection(), // selectionPolicy
    0.25, // stepSize
    1.5, // populationFactor
    7, // maxRestarts
    1e6 // maxFunctionEvaluations
  );

  FunctionTest<RosenbrockFunction, TestType>(bipopcmaes,
      10 * Tolerances<TestType>::LargeObj,
      10 * Tolerances<TestType>::LargeCoord,
      3);
}

/**
 * Run IPOP-CMA-ES with the full selection policy on logistic regression and
 * make sure the results are acceptable.
 */
TEMPLATE_TEST_CASE("IPOP_CMAES_LogisticRegressionFunction", "[POPCMAES]",
    ENS_FULLPREC_CPU_TEST_TYPES)
{
  BoundaryBoxConstraint<TestType> b(-10, 10);
  IPOP_CMAES<FullSelection, BoundaryBoxConstraint<TestType>> cmaes(
      0, b, 32, 1000, 1e-3, FullSelection(), 0.6, 2.0, 7, 1e7);
  LogisticRegressionFunctionTest<TestType>(cmaes,
      Tolerances<TestType>::LRTrainAcc, Tolerances<TestType>::LRTestAcc, 5);
}

/**
 * Run BIPOP-CMA-ES with the random selection policy on logistic regression and
 * make sure the results are acceptable.
 */
TEMPLATE_TEST_CASE("BIPOP_CMAESLogisticRegressionFunction", "[POPCMAES]",
    ENS_FULLPREC_CPU_TEST_TYPES)
{
  BoundaryBoxConstraint<TestType> b(-10, 10);
  BIPOP_CMAES<FullSelection, BoundaryBoxConstraint<TestType>> cmaes(
      0, b, 32, 1000, 1e-3, FullSelection(), 0.6, 2.0, 7, 1e7);
  LogisticRegressionFunctionTest<TestType>(cmaes,
      Tolerances<TestType>::LRTrainAcc, Tolerances<TestType>::LRTestAcc, 5);
}