1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
/**
* @file proximal_test.cpp
* @author Chenzhe Diao
* @author Marcus Edel
* @author Conrad Sanderson
*
* ensmallen is free software; you may redistribute it and/or modify it under
* the terms of the 3-clause BSD license. You should have received a copy of
* the 3-clause BSD license along with ensmallen. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#include <ensmallen.hpp>
#include "catch.hpp"
using namespace ens;
using namespace arma;
using namespace ens::test;
/**
* Approximate vector using a vector with l1 norm small than or equal to tau.
*/
TEST_CASE("ProjectToL1", "[ProximalTest]")
{
int D = 100; // Dimension of the problem.
// Norm of L1 ball.
double tau1 = 1.5;
double tau2 = 0.5;
// Vector to be projected, with unit l1 norm.
vec v = randu<vec>(D);
v = normalise(v, 1);
// v is inside the l1 ball, so the projection will not change v.
vec v1 = v;
Proximal::ProjectToL1Ball(v1, tau1);
REQUIRE(norm(v - v1, 2) == Approx(0.0).margin(1e-10));
// v is outside the l1 ball, so the projection should find the closest.
vec v2 = v;
Proximal::ProjectToL1Ball(v2, tau2);
double distance = norm(v2 - v, 2);
for (size_t i = 1; i < 1000; i++)
{
// Randomly generate a vector on the surface of the l1 ball with norm tau2.
vec vSurface = randu<vec>(D);
vSurface = tau2 * normalise(vSurface, 1);
double distanceNew = norm(vSurface - v, 2);
REQUIRE(distanceNew >= distance);
}
}
/**
* Approximate a vector with a tau-sparse vector.
*/
TEST_CASE("ProjectToL0", "[ProximalTest]")
{
int D = 100; // Dimension of the problem.
int tau = 25; // Sparsity requirement.
// Vector to be projected.
vec v = randn<vec>(D);
vec v0 = v;
Proximal::ProjectToL0Ball(v0, tau);
double distance = norm(v0 - v, 2);
for (size_t i = 1; i < 1000; i++)
{
// Randomly find a subset of the support of v, generate a tau-sparse
// vector by restricting v to this support.
uvec indices = ens::linspace<uvec>(0, D - 1, D);
indices = shuffle(indices);
indices = indices.head(tau);
vec vNew = zeros<vec>(D);
vNew.elem(indices) = v.elem(indices);
double distanceNew = norm(v - vNew, 2);
REQUIRE(distanceNew >= distance);
}
}
|