File: sgd_test.cpp

package info (click to toggle)
ensmallen 3.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,952 kB
  • sloc: cpp: 44,963; sh: 186; makefile: 35
file content (106 lines) | stat: -rw-r--r-- 3,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/**
 * @file sgd_test.cpp
 * @author Ryan Curtin
 * @author Marcus Edel
 * @author Conrad Sanderson
 *
 * ensmallen is free software; you may redistribute it and/or modify it under
 * the terms of the 3-clause BSD license.  You should have received a copy of
 * the 3-clause BSD license along with ensmallen.  If not, see
 * http://www.opensource.org/licenses/BSD-3-Clause for more information.
 */
#if defined(ENS_USE_COOT)
  #include <armadillo>
  #include <bandicoot>
#endif
#include <ensmallen.hpp>
#include "catch.hpp"
#include "test_function_tools.hpp"
#include "test_types.hpp"

using namespace arma;
using namespace ens;
using namespace ens::test;

template<typename MatType>
void SGDGeneralizedRosenbrockTest(const size_t variants = 50)
{
  typedef typename MatType::elem_type ElemType;

  const double objTol = 100 * Tolerances<MatType>::Obj;
  const double coordTol = 100 * Tolerances<MatType>::Coord;

  // Loop over several variants.
  for (size_t i = 10; i < variants; i += 5)
  {
    // Create the generalized Rosenbrock function.
    GeneralizedRosenbrockFunction f(i);

    // Allow a few trials.
    for (size_t trial = 0; trial < 5; ++trial)
    {
      StandardSGD s(0.001, 1, 1000000, Tolerances<MatType>::Obj / 100, true);

      MatType coordinates = f.GetInitialPoint<MatType>();
      float result = s.Optimize(f, coordinates);

      if (trial != 4)
      {
        if (result != Approx(0.0).margin(objTol))
          continue;
        for (size_t j = 0; j < i; ++j)
        {
          if (ElemType(coordinates(j)) != Approx(1.0).epsilon(coordTol))
            continue;
        }
      }

      REQUIRE(result == Approx(0.0).margin(objTol));
      for (size_t j = 0; j < i; ++j)
        REQUIRE(ElemType(coordinates(j)) == Approx(1.0).epsilon(coordTol));
      break;
    }
  }
}

template<typename MatType>
void SGDLogisticRegressionTest()
{
  typedef typename ForwardType<MatType, size_t>::brow LabelsType;

  MatType data, testData;
  LabelsType responses, testResponses;

  LogisticRegressionTestData(data, testData, responses, testResponses);
  MatType data2 = data;
  LabelsType responses2 = responses;
  LogisticRegressionFunction<MatType> lr(data2, responses2, 0.5);
  lr.Shuffle();

  StandardSGD sgd(0.32);
  MatType coordinates = lr.GetInitialPoint();
  sgd.Optimize(lr, coordinates);

  // Ensure that the error is close to zero.
  const double acc = lr.ComputeAccuracy(data, responses, coordinates);

  REQUIRE(acc == Approx(100.0).epsilon(Tolerances<MatType>::LRTrainAcc));

  const double testAcc = lr.ComputeAccuracy(testData, testResponses,
      coordinates);
  REQUIRE(testAcc == Approx(100.0).epsilon(Tolerances<MatType>::LRTestAcc));
}

// We skip low precision for this test because tuning SGD for the Rosenbrock
// function is really tricky.
TEMPLATE_TEST_CASE("SGD_GeneralizedRosenbrockFunction", "[SGD]",
    ENS_FULLPREC_CPU_TEST_TYPES)
{
  SGDGeneralizedRosenbrockTest<TestType>();
}

TEMPLATE_TEST_CASE("SGD_LogisticRegressionFunction", "[SGD]",
    ENS_ALL_TEST_TYPES)
{
  SGDLogisticRegressionTest<TestType>();
}