1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/*
* This is an implementation of wcwidth() and wcswidth() (defined in
* IEEE Std 1002.1-2001) for Unicode.
*
* http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
* http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
*
* In fixed-width output devices, Latin characters all occupy a single
* "cell" position of equal width, whereas ideographic CJK characters
* occupy two such cells. Interoperability between terminal-line
* applications and (teletype-style) character terminals using the
* UTF-8 encoding requires agreement on which character should advance
* the cursor by how many cell positions. No established formal
* standards exist at present on which Unicode character shall occupy
* how many cell positions on character terminals. These routines are
* a first attempt of defining such behavior based on simple rules
* applied to data provided by the Unicode Consortium.
*
* For some graphical characters, the Unicode standard explicitly
* defines a character-cell width via the definition of the East Asian
* FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
* In all these cases, there is no ambiguity about which width a
* terminal shall use. For characters in the East Asian Ambiguous (A)
* class, the width choice depends purely on a preference of backward
* compatibility with either historic CJK or Western practice.
* Choosing single-width for these characters is easy to justify as
* the appropriate long-term solution, as the CJK practice of
* displaying these characters as double-width comes from historic
* implementation simplicity (8-bit encoded characters were displayed
* single-width and 16-bit ones double-width, even for Greek,
* Cyrillic, etc.) and not any typographic considerations.
*
* Much less clear is the choice of width for the Not East Asian
* (Neutral) class. Existing practice does not dictate a width for any
* of these characters. It would nevertheless make sense
* typographically to allocate two character cells to characters such
* as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
* represented adequately with a single-width glyph. The following
* routines at present merely assign a single-cell width to all
* neutral characters, in the interest of simplicity. This is not
* entirely satisfactory and should be reconsidered before
* establishing a formal standard in this area. At the moment, the
* decision which Not East Asian (Neutral) characters should be
* represented by double-width glyphs cannot yet be answered by
* applying a simple rule from the Unicode database content. Setting
* up a proper standard for the behavior of UTF-8 character terminals
* will require a careful analysis not only of each Unicode character,
* but also of each presentation form, something the author of these
* routines has avoided to do so far.
*
* http://www.unicode.org/unicode/reports/tr11/
*
* Markus Kuhn -- 2007-05-26 (Unicode 5.0)
*
* Permission to use, copy, modify, and distribute this software
* for any purpose and without fee is hereby granted. The author
* disclaims all warranties with regard to this software.
*
* Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
*/
/*
* Respnosible party: Jeremy Nelson at EPIC Software Labs (2014-01-30).
* Any changes I made are donated to the public domain.
*/
#include "irc.h"
#include "ircaux.h"
#include "output.h"
struct interval {
int first;
int last;
};
/* auxiliary function for binary search in interval table */
static int bisearch (int ucs, const struct interval *table, int max) {
int min = 0;
int mid;
if (ucs < table[0].first || ucs > table[max].last)
return 0;
while (max >= min) {
mid = (min + max) / 2;
if (ucs > table[mid].last)
min = mid + 1;
else if (ucs < table[mid].first)
max = mid - 1;
else
return 1;
}
return 0;
}
/* The following two functions define the column width of an ISO 10646
* character as follows:
*
* - The null character (U+0000) has a column width of 0.
*
* - Other C0/C1 control characters and DEL will lead to a return
* value of -1.
*
* - Non-spacing and enclosing combining characters (general
* category code Mn or Me in the Unicode database) have a
* column width of 0.
*
* - SOFT HYPHEN (U+00AD) has a column width of 1.
*
* - Other format characters (general category code Cf in the Unicode
* database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
*
* - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
* have a column width of 0.
*
* - Spacing characters in the East Asian Wide (W) or East Asian
* Full-width (F) category as defined in Unicode Technical
* Report #11 have a column width of 2.
*
* - All remaining characters (including all printable
* ISO 8859-1 and WGL4 characters, Unicode control characters,
* etc.) have a column width of 1.
*
* This implementation assumes that (int) characters are encoded
* in ISO 10646.
*/
int codepoint_numcolumns (int ucs)
{
int retval;
/* sorted list of non-overlapping intervals of non-spacing characters */
/* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
static const struct interval combining[] = {
{ 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
{ 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
{ 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
{ 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
{ 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
{ 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
{ 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
{ 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
{ 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
{ 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
{ 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
{ 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
{ 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
{ 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
{ 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
{ 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
{ 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
{ 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
{ 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
{ 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
{ 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
{ 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
{ 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
{ 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
{ 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
{ 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
{ 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
{ 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
{ 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
{ 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
{ 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
{ 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
{ 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
{ 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
{ 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
{ 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
{ 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
{ 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
{ 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
{ 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
{ 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
{ 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
{ 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
{ 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
{ 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
{ 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
{ 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
{ 0xE0100, 0xE01EF }
};
if (ucs == 0)
return 0;
/* test for C0 control chars including C1 8 bit control chars */
if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
return -1;
/* binary search in table of non-spacing characters */
if (bisearch(ucs, combining,
sizeof(combining) / sizeof(struct interval) - 1))
return 0;
/* if we arrive here, ucs is not a combining or C0/C1 control character */
retval = 1 +
(ucs >= 0x1100 &&
(ucs <= 0x115f || /* Hangul Jamo init. consonants */
ucs == 0x2329 || ucs == 0x232a ||
(ucs >= 0x2e80 && ucs <= 0xa4cf &&
ucs != 0x303f) || /* CJK ... Yi */
(ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
(ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
(ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
(ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
(ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
(ucs >= 0xffe0 && ucs <= 0xffe6) ||
(ucs >= 0x1f300 && ucs <= 0x1f6ff) || /* Emojis, unicode 6 */
(ucs >= 0x20000 && ucs <= 0x2fffd) ||
(ucs >= 0x30000 && ucs <= 0x3fffd)));
return retval;
}
/* *** ADDED STUFF - NOT IN ORIGINAL *** */
int next_code_point2 (const char *i_, ptrdiff_t *bytes_used, int resync)
{
unsigned char a, b, c, d;
const char * i = i_;
const char * str;
int result;
if (!i_)
return 0; /* What is this? */
/* Keep skipping bytes until we find one that works */
for (; *i; i++)
{
str = i;
a = b = c = d = 0;
result = -1;
/* Forcibly refuse to walk past the nul */
if (str[0] == 0)
return 0;
if (str[0])
{
a = (unsigned char)str[0];
if (str[1])
{
b = (unsigned char)str[1];
if (str[2])
{
c = (unsigned char)str[2];
if (str[3])
d = (unsigned char)str[3];
}
}
}
if ((a & 0x80) == 0x00)
{
result = a;
i++;
}
/* The 2 high bits are set only? -- 2 bytes */
if ((a & 0xE0) == 0xC0)
{
if ((b & 0xC0) == 0x80)
{
result = ((a & 0x1F) << 6) + (b & 0x3f);
i += 2;
}
}
/* The 3 high bits are set only? -- 3 bytes */
else if ((a & 0xF0) == 0xE0)
{
if ((b & 0xC0) == 0x80)
{
if ((c & 0xC0) == 0x80)
{
result = ((a & 0x0F) << 12) +
((b & 0x3f) << 6) +
(c & 0x3f);
i += 3;
}
}
}
/* The 4 high bits are set only? -- 4 bytes*/
else if ((a & 0xF8) == 0xF0)
{
if ((b & 0xC0) == 0x80)
{
if ((c & 0xC0) == 0x80)
{
if ((d & 0xC0) == 0x80)
{
result = ((a & 0x07) << 18) +
((b & 0x3f) << 12) +
((c & 0x3f) << 6) +
(d & 0x3F);
i += 4;
}
}
}
}
/* If result is -1, something is wrong */
if (result == -1)
{
if (resync)
continue;
}
*bytes_used = i - i_;
return result;
}
/* If we hit the end of the string, return nul */
*bytes_used = i - i_;
return 0;
}
/*
* partial_code_point -- Tell me why 'i' is not a valid utf8 sequence
*
* Arguments:
* i - A pointer to a string rejected by next_code_point()
*
* Return value:
* 1 - The string 'i' points at a utf8 sequence that appears
* to be valid, but truncated.
* 0 - I don't see anything wrong with 'i'
* -1 - 'i' does not point at a valid utf8 sequence at all.
*/
int partial_code_point (const char *i_)
{
const char *i = i_;
unsigned char a, b, c, d;
const char *str;
str = i;
a = b = c = d = 0;
if (str[0])
{
a = (unsigned char)str[0];
if (str[1])
{
b = (unsigned char)str[1];
if (str[2])
{
c = (unsigned char)str[2];
if (str[3])
d = (unsigned char)str[3];
}
}
}
/* A 7 bit char is not a partial incomplete sequence */
if ((a & 0x80) == 0x00)
return 0;
/* The 2 high bits are set only? -- 2 bytes */
if ((a & 0xE0) == 0xC0)
{
/* if b is a nul, then it is truncated */
if (b == 0)
return 1;
/* If it's valid, ok. */
else if ((b & 0xC0) == 0x80)
return 0;
/* This is just garbage */
else
return -1;
}
/* The 3 high bits are set only? -- 3 bytes */
else if ((a & 0xF0) == 0xE0)
{
/* If b is a null, it is truncated */
if (b == 0)
return 1;
/* Otherwise, if 'b' is a valid next char... */
else if ((b & 0xC0) == 0x80)
{
/* If c is a null, it is truncated */
if (c == 0)
return 1;
/* Or, if c is a valid final char... */
else if ((c & 0xC0) == 0x80)
return 0;
/* Otherwise, c is just garbage */
else
return -1;
}
/* Otherwise, 'b' is just garbage */
else
return -1;
}
/* The 4 high bits are set only? -- 4 bytes*/
else if ((a & 0xF8) == 0xF0)
{
if (b == 0)
return 1;
/* Otherwise, if 'b' is a valid next char... */
else if ((b & 0xC0) == 0x80)
{
/* If c is a null, it is truncated */
if (c == 0)
return 1;
/* Or, if c is a valid next char... */
else if ((c & 0xC0) == 0x80)
{
if (d == 0)
return 1;
else if ((d & 0xC0) == 0x80)
return 0;
else
return -1;
}
/* Otherwise, c is just garbage */
else
return -1;
}
else
return -1;
}
return -1;
}
int grab_codepoint (const char *x)
{
ptrdiff_t offset;
return next_code_point2(x, &offset, 1);
}
/*
* quick_display_column_count - How many columns would 'str' take up?
*
* Arguments:
* str - A UTF-8 string
*
* Return Value:
* The number of columns 'str' would take up.
*
* IMPORTANT NOTE!
* This function does NOT properly handle attribute markers that
* take following characters (^C, ^X). Whereas it properly ignores
* things like ^V, ^B, ^C02 would result in "2" rather than "0".
*
* The correct way to get column counts is found in
* ircaux.c:fix_string_width(), which involves using
* new_normalize_string() and output_with_count().
*/
/* XXX DO NOT USE THIS FUNCTION IF 'str' MIGHT CONTAIN HIGHLIGHT CHARS! XXX */
int quick_display_column_count (const char *str)
{
const char *s;
int code_point;
int length = 0;
int x;
ptrdiff_t offset;
s = str;
while ((code_point = next_code_point2(s, &offset, 1)))
{
s += offset;
if ((x = codepoint_numcolumns(code_point)) == -1)
x = 0;
length += x;
}
return length;
}
/*
* count_initial_codepoints - How many codepoints in 'str' before 'p'?
*
* Arguments:
* str - A UTF-8 string
* p - A character pointer somewhere inside 'str'
*
* Return Value:
* The number of codepoints in 'str' before 'p'
* ie, $mid(X 999 $str) == $p
*
* IMPORTANT NOTE!
* This is used by $regmatches() to convert a pointer to something
* that you can pass to $mid().
*/
int count_initial_codepoints (const char *str, const char *p)
{
const char *s;
int length = 0;
ptrdiff_t offset;
if (str >= p)
return 0;
s = str;
while (next_code_point2(s, &offset, 1))
{
s += offset;
length++;
if (s >= p)
return length;
}
/*
* This is only reached if 'p' is not in 'str'.
* In this case, I decided it's better to point at
* the end ofo the string, which yields a zero-length
* string. I'm not positive this is the right call
*/
return length;
}
int input_column_count (const char *str)
{
const char *s;
int code_point;
int length = 0;
int x;
ptrdiff_t offset;
s = str;
while ((code_point = next_code_point2(s, &offset, 1)))
{
s += offset;
if ((x = codepoint_numcolumns(code_point)) == -1)
x = 1;
length += x;
}
return length;
}
/*
* This does a QUICK code point count.
* Every code point contains one (and only one) byte in the range:
* 0x00-0x7F
* 0xC0-0xFF
* This function doesn't attempt to validate broken utf8.
*/
int quick_code_point_count (const char *str)
{
const char *s;
int count;
for (count = 0, s = str; *s; s++)
{
if ((unsigned char)*s < 0x80 || (unsigned char)*s >= 0xC0)
count++;
}
return count;
}
/*
* previous_code_point - Move *i back one code point.
* *** IMPORTANT ***
* This is technically a "quick" function since it
* does not validate the string is well formed utf8.
*
* Arguments:
* st The first byte of whatever string 'i' is pointing to.
* i A pointer to the start of a CP.
*
* Return Value:
* - If 'i' points at the first byte of a code point, then
* the code point that ends at the byte i - 1.
* - If 'i' does not point at the first byte of a code point,
* then the code that that contains 'i'.
* - If 'i' points at the start of string (st), returns 0 so you can stop.
* *offset will be set to first byte of the code point whose value is returned.
*
* If the previous code point is invalid (next_code_point2() returns -1)
* then it will skip that invalid code point and keep walking backwards.
*/
int previous_code_point2 (const char *st, const char *i, ptrdiff_t *offset)
{
const char * c;
int retval;
ptrdiff_t offset2;
c = i;
for (;;)
{
if (c == st)
{
*offset = 0;
return 0; /* Time to stop */
}
if (c > st && ((unsigned char)*c < 0x80 || (unsigned char)*c >= 0xC0))
c--;
while (c > st && ((unsigned char)*c >= 0x80 && (unsigned char)*c < 0xC0))
c--;
if ((retval = next_code_point2(c, &offset2, 0)) >= 0)
{
*offset = c - i;
return retval;
}
}
}
/*
* This does a QUICK count of the CP "index" of 'loc' in 'str'.
*/
int quick_code_point_index (const char *str, const char *loc)
{
const char *s;
int count;
for (count = 0, s = str; *s && s < loc; s++)
{
if ((unsigned char)*s < 0x80 || (unsigned char)*s >= 0xC0)
count++;
}
return count;
}
|