File: wcwidth.c

package info (click to toggle)
epic5 3.0.3-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 5,328 kB
  • sloc: ansic: 75,810; makefile: 648; ruby: 227; python: 215; sh: 78; perl: 13
file content (638 lines) | stat: -rw-r--r-- 18,930 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*
 * This is an implementation of wcwidth() and wcswidth() (defined in
 * IEEE Std 1002.1-2001) for Unicode.
 *
 * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html
 * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html
 *
 * In fixed-width output devices, Latin characters all occupy a single
 * "cell" position of equal width, whereas ideographic CJK characters
 * occupy two such cells. Interoperability between terminal-line
 * applications and (teletype-style) character terminals using the
 * UTF-8 encoding requires agreement on which character should advance
 * the cursor by how many cell positions. No established formal
 * standards exist at present on which Unicode character shall occupy
 * how many cell positions on character terminals. These routines are
 * a first attempt of defining such behavior based on simple rules
 * applied to data provided by the Unicode Consortium.
 *
 * For some graphical characters, the Unicode standard explicitly
 * defines a character-cell width via the definition of the East Asian
 * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes.
 * In all these cases, there is no ambiguity about which width a
 * terminal shall use. For characters in the East Asian Ambiguous (A)
 * class, the width choice depends purely on a preference of backward
 * compatibility with either historic CJK or Western practice.
 * Choosing single-width for these characters is easy to justify as
 * the appropriate long-term solution, as the CJK practice of
 * displaying these characters as double-width comes from historic
 * implementation simplicity (8-bit encoded characters were displayed
 * single-width and 16-bit ones double-width, even for Greek,
 * Cyrillic, etc.) and not any typographic considerations.
 *
 * Much less clear is the choice of width for the Not East Asian
 * (Neutral) class. Existing practice does not dictate a width for any
 * of these characters. It would nevertheless make sense
 * typographically to allocate two character cells to characters such
 * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be
 * represented adequately with a single-width glyph. The following
 * routines at present merely assign a single-cell width to all
 * neutral characters, in the interest of simplicity. This is not
 * entirely satisfactory and should be reconsidered before
 * establishing a formal standard in this area. At the moment, the
 * decision which Not East Asian (Neutral) characters should be
 * represented by double-width glyphs cannot yet be answered by
 * applying a simple rule from the Unicode database content. Setting
 * up a proper standard for the behavior of UTF-8 character terminals
 * will require a careful analysis not only of each Unicode character,
 * but also of each presentation form, something the author of these
 * routines has avoided to do so far.
 *
 * http://www.unicode.org/unicode/reports/tr11/
 *
 * Markus Kuhn -- 2007-05-26 (Unicode 5.0)
 *
 * Permission to use, copy, modify, and distribute this software
 * for any purpose and without fee is hereby granted. The author
 * disclaims all warranties with regard to this software.
 *
 * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
 */
/*
 * Respnosible party: Jeremy Nelson at EPIC Software Labs (2014-01-30).
 * Any changes I made are donated to the public domain.
 */

#include "irc.h"
#include "ircaux.h"
#include "output.h"

struct interval {
  int first;
  int last;
};

/* auxiliary function for binary search in interval table */
static int bisearch (int ucs, const struct interval *table, int max) {
  int min = 0;
  int mid;

  if (ucs < table[0].first || ucs > table[max].last)
    return 0;
  while (max >= min) {
    mid = (min + max) / 2;
    if (ucs > table[mid].last)
      min = mid + 1;
    else if (ucs < table[mid].first)
      max = mid - 1;
    else
      return 1;
  }

  return 0;
}


/* The following two functions define the column width of an ISO 10646
 * character as follows:
 *
 *    - The null character (U+0000) has a column width of 0.
 *
 *    - Other C0/C1 control characters and DEL will lead to a return
 *      value of -1.
 *
 *    - Non-spacing and enclosing combining characters (general
 *      category code Mn or Me in the Unicode database) have a
 *      column width of 0.
 *
 *    - SOFT HYPHEN (U+00AD) has a column width of 1.
 *
 *    - Other format characters (general category code Cf in the Unicode
 *      database) and ZERO WIDTH SPACE (U+200B) have a column width of 0.
 *
 *    - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF)
 *      have a column width of 0.
 *
 *    - Spacing characters in the East Asian Wide (W) or East Asian
 *      Full-width (F) category as defined in Unicode Technical
 *      Report #11 have a column width of 2.
 *
 *    - All remaining characters (including all printable
 *      ISO 8859-1 and WGL4 characters, Unicode control characters,
 *      etc.) have a column width of 1.
 *
 * This implementation assumes that (int) characters are encoded
 * in ISO 10646.
 */
int	codepoint_numcolumns (int ucs)
{
	int	retval;

  /* sorted list of non-overlapping intervals of non-spacing characters */
  /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */
  static const struct interval combining[] = {
    { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 },
    { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 },
    { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 },
    { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 },
    { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED },
    { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A },
    { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 },
    { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D },
    { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 },
    { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD },
    { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C },
    { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D },
    { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC },
    { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD },
    { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C },
    { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D },
    { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 },
    { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 },
    { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC },
    { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD },
    { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D },
    { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 },
    { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E },
    { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC },
    { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 },
    { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E },
    { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 },
    { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 },
    { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 },
    { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F },
    { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 },
    { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD },
    { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD },
    { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 },
    { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B },
    { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 },
    { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 },
    { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF },
    { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 },
    { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F },
    { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B },
    { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F },
    { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB },
    { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F },
    { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 },
    { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD },
    { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F },
    { 0xE0100, 0xE01EF }
  };

  if (ucs == 0)
    return 0;

  /* test for C0 control chars including C1 8 bit control chars */
  if (ucs < 32 || (ucs >= 0x7f && ucs < 0xa0))
    return -1;

  /* binary search in table of non-spacing characters */
  if (bisearch(ucs, combining,
	       sizeof(combining) / sizeof(struct interval) - 1))
    return 0;

  /* if we arrive here, ucs is not a combining or C0/C1 control character */

  retval = 1 + 
    (ucs >= 0x1100 &&
     (ucs <= 0x115f ||                    /* Hangul Jamo init. consonants */
      ucs == 0x2329 || ucs == 0x232a ||
      (ucs >= 0x2e80 && ucs <= 0xa4cf &&
       ucs != 0x303f) ||                  /* CJK ... Yi */
      (ucs >= 0xac00 && ucs <= 0xd7a3) || /* Hangul Syllables */
      (ucs >= 0xf900 && ucs <= 0xfaff) || /* CJK Compatibility Ideographs */
      (ucs >= 0xfe10 && ucs <= 0xfe19) || /* Vertical forms */
      (ucs >= 0xfe30 && ucs <= 0xfe6f) || /* CJK Compatibility Forms */
      (ucs >= 0xff00 && ucs <= 0xff60) || /* Fullwidth Forms */
      (ucs >= 0xffe0 && ucs <= 0xffe6) ||
      (ucs >= 0x1f300 && ucs <= 0x1f6ff) ||	/* Emojis, unicode 6 */
      (ucs >= 0x20000 && ucs <= 0x2fffd) ||
      (ucs >= 0x30000 && ucs <= 0x3fffd)));

  return retval;
}

/* *** ADDED STUFF - NOT IN ORIGINAL *** */
int     next_code_point2 (const char *i_, ptrdiff_t *bytes_used, int resync)
{
        unsigned char   a, b, c, d;
	const char *	i = i_;
        const char *	str;
        int     	result;

	if (!i_)
		return 0;	/* What is this? */

    /* Keep skipping bytes until we find one that works */
    for (; *i; i++)
    {
        str = i;
        a = b = c = d = 0;
	result = -1;

	/* Forcibly refuse to walk past the nul */
	if (str[0] == 0)
		return 0;

        if (str[0])
        {
                a = (unsigned char)str[0];
                if (str[1])
                {
                        b = (unsigned char)str[1];
                        if (str[2])
                        {
                                c = (unsigned char)str[2];
                                if (str[3])
                                        d = (unsigned char)str[3];
                        }
                }
        }

        if ((a & 0x80) == 0x00)
        {
                result = a;
                i++;
        }

        /* The 2 high bits are set only?  -- 2 bytes */
        if ((a & 0xE0) == 0xC0)
        {
                if ((b & 0xC0) == 0x80)
                {
                        result = ((a & 0x1F) << 6) + (b & 0x3f);
                        i += 2;
                }
        }

        /* The 3 high bits are set only?  -- 3 bytes */
        else if ((a & 0xF0) == 0xE0)
        {
                if ((b & 0xC0) == 0x80)
		{
                  if ((c & 0xC0) == 0x80)
                  {
                    result = ((a & 0x0F) << 12) + 
				((b & 0x3f) << 6) + 
				(c & 0x3f);
                    i += 3;
                  }
		}
        }

        /* The 4 high bits are set only?  -- 4 bytes*/
        else if ((a & 0xF8) == 0xF0)
        {
                if ((b & 0xC0) == 0x80)
		{
                  if ((c & 0xC0) == 0x80)
		  {
                    if ((d & 0xC0) == 0x80)
                    {
                      result = ((a & 0x07) << 18) + 
				((b & 0x3f) << 12) + 
				((c & 0x3f) << 6) + 
				(d & 0x3F);
                      i += 4;
                    }
		  }
		}
        }

	/* If result is -1, something is wrong */
	if (result == -1)
	{
		if (resync)
			continue;
	}

	*bytes_used = i - i_;
        return result;

    }

    /* If we hit the end of the string, return nul */
    *bytes_used = i - i_;
    return 0;
}

/*
 * partial_code_point -- Tell me why 'i' is not a valid utf8 sequence
 *
 * Arguments:
 *	i	- A pointer to a string rejected by next_code_point()
 *
 * Return value:
 *	1	- The string 'i' points at a utf8 sequence that appears
 *		  to be valid, but truncated.
 *	0	- I don't see anything wrong with 'i'
 *	-1	- 'i' does not point at a valid utf8 sequence at all.
 */
int     partial_code_point (const char *i_)
{
	const char *i = i_;
        unsigned char    a, b, c, d;
        const char *str;

        str = i;
        a = b = c = d = 0;

        if (str[0])
        {
                a = (unsigned char)str[0];
                if (str[1])
                {
                        b = (unsigned char)str[1];
                        if (str[2])
                        {
                                c = (unsigned char)str[2];
                                if (str[3])
                                        d = (unsigned char)str[3];
                        }
                }
        }

	/* A 7 bit char is not a partial incomplete sequence */
        if ((a & 0x80) == 0x00)
		return 0;

        /* The 2 high bits are set only?  -- 2 bytes */
        if ((a & 0xE0) == 0xC0)
        {
		/* if b is a nul, then it is truncated */
		if (b == 0)
			return 1;

		/* If it's valid, ok. */
                else if ((b & 0xC0) == 0x80)
			return 0;

		/* This is just garbage */
		else 
			return -1;
        }

        /* The 3 high bits are set only?  -- 3 bytes */
        else if ((a & 0xF0) == 0xE0)
        {
		/* If b is a null, it is truncated */
		if (b == 0)
			return 1;

		/* Otherwise, if 'b' is a valid next char... */
		else if ((b & 0xC0) == 0x80)
		{
			/* If c is a null, it is truncated */
			if (c == 0)
				return 1;

			/* Or, if c is a valid final char... */
			else if ((c & 0xC0) == 0x80)
				return 0;

			/* Otherwise, c is just garbage */
			else
				return -1;
		}

		/* Otherwise, 'b' is just garbage */
		else
			return -1;
        }

        /* The 4 high bits are set only?  -- 4 bytes*/
        else if ((a & 0xF8) == 0xF0)
        {
		if (b == 0)
			return 1;

		/* Otherwise, if 'b' is a valid next char... */
		else if ((b & 0xC0) == 0x80)
		{
			/* If c is a null, it is truncated */
			if (c == 0)
				return 1;

			/* Or, if c is a valid next char... */
			else if ((c & 0xC0) == 0x80)
			{
				if (d == 0)
					return 1;
				else if ((d & 0xC0) == 0x80)
					return 0;
				else
					return -1;
			}

			/* Otherwise, c is just garbage */
			else
				return -1;
		}

		else
			return -1;
        }

	return -1;
}


int	grab_codepoint (const char *x)
{
	ptrdiff_t	offset;

	return next_code_point2(x, &offset, 1);
}

/*
 * quick_display_column_count - How many columns would 'str' take up?
 *
 * Arguments:
 *	str	- A UTF-8 string
 *
 * Return Value:
 * 	The number of columns 'str' would take up.
 *
 * IMPORTANT NOTE!
 *	This function does NOT properly handle attribute markers that
 *	take following characters (^C, ^X).  Whereas it properly ignores
 *	things like ^V, ^B, ^C02 would result in "2" rather than "0".
 *
 *	The correct way to get column counts is found in 
 *	ircaux.c:fix_string_width(), which involves using 
 *	new_normalize_string() and output_with_count().
 */
/* XXX DO NOT USE THIS FUNCTION IF 'str' MIGHT CONTAIN HIGHLIGHT CHARS! XXX */
int	quick_display_column_count (const char *str)
{
	const char *s;
	int	code_point;
	int	length = 0;
	int	x;
	ptrdiff_t	offset;

	s = str;
	while ((code_point = next_code_point2(s, &offset, 1)))
	{
		s += offset;
		if ((x = codepoint_numcolumns(code_point)) == -1)
			x = 0;
		length += x;
	}

	return length;
}

/*
 * count_initial_codepoints - How many codepoints in 'str' before 'p'?
 *
 * Arguments:
 *	str	- A UTF-8 string
 *      p       - A character pointer somewhere inside 'str'
 *
 * Return Value:
 * 	The number of codepoints in 'str' before 'p'
 *      ie,  $mid(X 999 $str) == $p
 *
 * IMPORTANT NOTE!
 *      This is used by $regmatches() to convert a pointer to something
 *      that you can pass to $mid().
 */
int	count_initial_codepoints (const char *str, const char *p)
{
	const char *s;
	int	length = 0;
	ptrdiff_t	offset;

	if (str >= p)
		return 0;

	s = str;
	while (next_code_point2(s, &offset, 1))
	{
		s += offset;
		length++;
		if (s >= p)
			return length;
	}

	/* 
	 * This is only reached if 'p' is not in 'str'.
	 * In this case, I decided it's better to point at
	 * the end ofo the string, which yields a zero-length
	 * string.  I'm not positive this is the right call
	 */
	return length;
}


int	input_column_count (const char *str)
{
	const char *s;
	int	code_point;
	int	length = 0;
	int	x;
	ptrdiff_t	offset;

	s = str;
	while ((code_point = next_code_point2(s, &offset, 1)))
	{
		s += offset;
		if ((x = codepoint_numcolumns(code_point)) == -1)
			x = 1;
		length += x;
	}

	return length;
}

/*
 * This does a QUICK code point count.
 * Every code point contains one (and only one) byte in the range:
 *	0x00-0x7F
 *	0xC0-0xFF
 * This function doesn't attempt to validate broken utf8.
 */
int	quick_code_point_count (const char *str)
{
	const char *s;
	int	count;

	for (count = 0, s = str; *s; s++)
	{
		if ((unsigned char)*s < 0x80 || (unsigned char)*s >= 0xC0)
			count++;
	}
	return count;
}


/*
 * previous_code_point	- Move *i back one code point.
 *			 *** IMPORTANT ***
 *			 This is technically a "quick" function since it
 *			 does not validate the string is well formed utf8.
 *
 * Arguments:
 *	st	The first byte of whatever string 'i' is pointing to.
 *	i	A pointer to the start of a CP.
 *
 * Return Value:
 *	- If 'i' points at the first byte of a code point, then 
 *	  the code point that ends at the byte i - 1.
 *	- If 'i' does not point at the first byte of a code point,
 *	  then the code that that contains 'i'.
 *	- If 'i' points at the start of string (st), returns 0 so you can stop.
 *	*offset will be set to first byte of the code point whose value is returned.
 *
 *	If the previous code point is invalid (next_code_point2() returns -1)
 *	then it will skip that invalid code point and keep walking backwards.
 */
int     previous_code_point2 (const char *st, const char *i, ptrdiff_t *offset)
{
	const char *	c;
	int		retval;
	ptrdiff_t	offset2;

	c = i;
	for (;;)
	{
		if (c == st)
		{
			*offset = 0;
			return 0;		/* Time to stop */
		}

		if (c > st && ((unsigned char)*c < 0x80 || (unsigned char)*c >= 0xC0))
			c--;

		while (c > st && ((unsigned char)*c >= 0x80 && (unsigned char)*c < 0xC0))
			c--;

		if ((retval = next_code_point2(c, &offset2, 0)) >= 0)
		{
			*offset = c - i;
			return retval;
		}
	}
}


/*
 * This does a QUICK count of the CP "index" of 'loc' in 'str'.
 */
int	quick_code_point_index (const char *str, const char *loc)
{
	const char *s;
	int	count;

	for (count = 0, s = str; *s && s < loc; s++)
	{
		if ((unsigned char)*s < 0x80 || (unsigned char)*s >= 0xC0)
			count++;
	}
	return count;
}