1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
#include <epicsUnitTest.h>
#include <testMain.h>
#include <pv/pvUnitTest.h>
#include <pv/inetAddressUtil.h>
#include <pv/logger.h>
#include <pv/byteBuffer.h>
#include <pv/pvType.h>
#include <epicsAssert.h>
#include <osiSock.h>
#include <iostream>
#include <cstring>
using namespace epics::pvData;
using namespace epics::pvAccess;
using namespace std;
std::ostream& operator<<(std::ostream& strm, const osiSockAddr& addr)
{
char buf[32];
ipAddrToDottedIP(&addr.ia, buf, sizeof(buf));
strm<<buf;
return strm;
}
namespace {
void test_getSocketAddressList()
{
testDiag("Test getSocketAddressList()");
InetAddrVector vec;
getSocketAddressList(vec, "127.0.0.1 10.10.12.11:1234 192.168.3.4", 555);
testOk1(static_cast<size_t>(3) == vec.size());
osiSockAddr addr;
addr = vec.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
InetAddrVector vec1;
getSocketAddressList(vec1, "172.16.55.160", 6789, &vec);
testOk1(static_cast<size_t>(4) == vec1.size());
addr = vec1.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(6789) == addr.ia.sin_port);
testOk1(htonl(0xAC1037A0) == addr.ia.sin_addr.s_addr);
testOk1("172.16.55.160:6789" == inetAddressToString(addr));
addr = vec1.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec1.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec1.at(3);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
// empty
InetAddrVector vec2;
getSocketAddressList(vec2, "", 1111);
testOk1(static_cast<size_t>(0) == vec2.size());
// just spaces
InetAddrVector vec3;
getSocketAddressList(vec3, " ", 1111);
testOk1(static_cast<size_t>(0) == vec3.size());
// leading spaces
InetAddrVector vec4;
getSocketAddressList(vec4, " 127.0.0.1 10.10.12.11:1234 192.168.3.4", 555);
testOk1(static_cast<size_t>(3) == vec4.size());
addr = vec4.at(0);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0x7F000001) == addr.ia.sin_addr.s_addr);
testOk1("127.0.0.1:555" == inetAddressToString(addr));
addr = vec4.at(1);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(1234) == addr.ia.sin_port);
testOk1(htonl(0x0A0A0C0B) == addr.ia.sin_addr.s_addr);
testOk1("10.10.12.11:1234" == inetAddressToString(addr));
addr = vec4.at(2);
testOk1(AF_INET == addr.ia.sin_family);
testOk1(htons(555) == addr.ia.sin_port);
testOk1(htonl(0xC0A80304) == addr.ia.sin_addr.s_addr);
testOk1("192.168.3.4:555" == inetAddressToString(addr));
}
void test_encodeAsIPv6Address()
{
testDiag("Test encodeAsIPv6Address()");
epics::auto_ptr<ByteBuffer> buff(new ByteBuffer(32, EPICS_ENDIAN_LITTLE));
char src[] = { (char)0, (char)0, (char)0, (char)0, (char)0, (char)0,
(char)0, (char)0, (char)0, (char)0, (char)0xFF, (char)0xFF,
(char)0x0A, (char)0x0A, (char)0x0C, (char)0x0B
};
osiSockAddr addr;
memset(&addr, 0, sizeof(addr));
addr.ia.sin_family = AF_INET;
addr.ia.sin_addr.s_addr = htonl(0x0A0A0C0B);
encodeAsIPv6Address(buff.get(), &addr);
testOk1(static_cast<size_t>(16) == buff->getPosition());
testOk1(strncmp(buff->getBuffer(), src, 16) == 0);
}
void test_isMulticastAddress()
{
testDiag("Test test_isMulticastAddress()");
InetAddrVector vec;
getSocketAddressList(vec, "127.0.0.1 255.255.255.255 0.0.0.0 224.0.0.0 239.255.255.255 235.3.6.3", 0);
testOk1(static_cast<size_t>(6) == vec.size());
testOk1(!isMulticastAddress(&vec.at(0)));
testOk1(!isMulticastAddress(&vec.at(1)));
testOk1(!isMulticastAddress(&vec.at(2)));
testOk1(isMulticastAddress(&vec.at(3)));
testOk1(isMulticastAddress(&vec.at(4)));
testOk1(isMulticastAddress(&vec.at(5)));
}
#ifdef _WIN32
// needed for ip_mreq
#include <ws2tcpip.h>
#endif
void test_multicastLoopback()
{
testDiag("Test test_multicast()");
osiSockAttach();
SOCKET socket = epicsSocketCreate(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
testOk1(socket != INVALID_SOCKET);
if (socket == INVALID_SOCKET)
testAbort("Can't allocate socket");
unsigned short port = 5555;
// set SO_REUSEADDR or SO_REUSEPORT, OS dependant
epicsSocketEnableAddressUseForDatagramFanout(socket);
osiSockAddr bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
bindAddr.ia.sin_family = AF_INET;
bindAddr.ia.sin_port = ntohs(port);
bindAddr.ia.sin_addr.s_addr = htonl(INADDR_ANY);
int status = ::bind(socket, (sockaddr*)&(bindAddr.sa), sizeof(sockaddr));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Failed to bind: %s\n", errStr);
epicsSocketDestroy(socket);
return;
}
osiSockAddr loAddr;
memset(&loAddr, 0, sizeof(loAddr));
loAddr.ia.sin_family = AF_INET;
loAddr.ia.sin_port = ntohs(port);
loAddr.ia.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
osiSockAddr mcastAddr;
aToIPAddr("224.0.0.128", port, &mcastAddr.ia);
struct ip_mreq imreq;
memset(&imreq, 0, sizeof(struct ip_mreq));
imreq.imr_multiaddr.s_addr = mcastAddr.ia.sin_addr.s_addr;
imreq.imr_interface.s_addr = loAddr.ia.sin_addr.s_addr;
// join multicast group on default interface
status = ::setsockopt(socket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(char*)&imreq, sizeof(struct ip_mreq));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_ADD_MEMBERSHIP: %s\n", errStr);
}
testOk(status == 0, "IP_ADD_MEMBERSHIP set");
SOCKET sendSocket = epicsSocketCreate(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
testOk1(sendSocket != INVALID_SOCKET);
if (sendSocket == INVALID_SOCKET)
return;
// set the multicast outgoing interface
status = ::setsockopt(sendSocket, IPPROTO_IP, IP_MULTICAST_IF,
(char*)&loAddr.ia.sin_addr, sizeof(struct in_addr));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_MULTICAST_IF: %s\n", errStr);
}
testOk(status == 0, "IP_MULTICAST_IF set");
// send multicast traffic to myself too
unsigned char mcast_loop = 1;
status = ::setsockopt(sendSocket, IPPROTO_IP, IP_MULTICAST_LOOP,
(char*)&mcast_loop, sizeof(unsigned char));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting IP_MULTICAST_LOOP: %s\n", errStr);
}
testOk(status == 0, "IP_MULTICAST_LOOP set");
// put some data in buffer
#define MAX_BUFFER_SIZE 1024
char txbuff[MAX_BUFFER_SIZE];
strcpy(txbuff, "mcastTest");
// send multicast packet
size_t len = strlen(txbuff);
status = ::sendto(sendSocket, txbuff, len, 0,
&(mcastAddr.sa), sizeof(sockaddr));
if (status < 0)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Multicast send error: %s\n", errStr);
}
testOk((size_t)status == len, "Multicast send");
// set timeout in case message is not sent
struct timeval timeout;
memset(&timeout, 0, sizeof(struct timeval));
timeout.tv_sec = 1;
timeout.tv_usec = 0;
status = ::setsockopt (socket, SOL_SOCKET, SO_RCVTIMEO,
(char*)&timeout, sizeof(timeout));
if (status)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Error setting SO_RCVTIMEO: %s\n", errStr);
}
testOk(status == 0, "SO_RCVTIMEO set");
char rxbuff[MAX_BUFFER_SIZE];
osiSockAddr fromAddress;
osiSocklen_t addrStructSize = sizeof(sockaddr);
// receive packet from socket
status = ::recvfrom(socket, rxbuff, MAX_BUFFER_SIZE, 0,
(sockaddr*)&fromAddress, &addrStructSize);
if (status < 0)
{
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
testFail("Multicast recv error: %s\n", errStr);
}
testOk((size_t)status == len, "Multicast recv");
testOk(strncmp(rxbuff, txbuff, len) == 0, "Multicast content matches");
// shutdown sockets?
epicsSocketDestroy(sendSocket);
epicsSocketDestroy(socket);
}
void test_discoverInterfaces()
{
testDiag("test_discoverInterfaces()");
SOCKET sock(epicsSocketCreate(AF_INET, SOCK_DGRAM, 0));
if(sock==INVALID_SOCKET)
testAbort("Failed to allocate socket");
IfaceNodeVector ifaces;
osiSockAddr any;
memset(&any, 0, sizeof(any));
any.ia.sin_family = AF_INET;
any.ia.sin_addr.s_addr = htonl(INADDR_ANY);
testEqual(discoverInterfaces(ifaces, sock, &any), 0);
testOk(ifaces.size()>0u, "Found %u interfaces", unsigned(ifaces.size()));
for(size_t i=0; i<ifaces.size(); i++)
{
const ifaceNode& node = ifaces[i];
testShow()<<"Iface["<<i<<"] addr="<<node.addr;
if(node.validP2P) {
testShow()<<" peer="<<node.peer;
}
if(node.validBcast) {
testShow()<<" mask="<<node.mask<<" bcast="<<node.bcast;
epicsUInt32 ip =ntohl(node.addr.ia.sin_addr.s_addr),
mask =ntohl(node.mask.ia.sin_addr.s_addr),
bcast=ntohl(node.bcast.ia.sin_addr.s_addr),
net =ip&mask,
bcast2=net|~mask;
testDiag("IP %08x/%08x Bcast %08x == %08x", ip, mask, bcast, bcast2);
}
if(node.loopback) {
testShow()<<" loopback";
}
}
}
} // namespace
MAIN(testInetAddressUtils)
{
testPlan(65);
testDiag("Tests for InetAddress utils");
test_getSocketAddressList();
test_encodeAsIPv6Address();
test_isMulticastAddress();
test_multicastLoopback();
testTodoBegin("Doen not PASS on Debian buildd");
test_discoverInterfaces();
testTodoEnd();
return testDone();
}
|