1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
/*
* functions.cc -- non-standard mathematical functions
*
* This file is part of ePiX, a preprocessor for creating high-quality
* line figures in LaTeX
*
* Version 1.2.0-2
* Last Change: September 26, 2007
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
* Andrew D. Hwang <ahwang -at- holycross -dot- edu>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <cmath>
#include "constants.h"
#include "errors.h"
#include "deriv.h"
#include "angle_units.h"
#include "triples.h"
#include "functions.h"
namespace ePiX {
// trig functions with angle units
double Cos(double t)
{
return std::cos(the_angle_style().to_radians(t));
}
double Sin(double t)
{
return std::sin(the_angle_style().to_radians(t));
}
double Tan(double t)
{
return std::tan(the_angle_style().to_radians(t));
}
double Sec(double t)
{
return 1.0/std::cos(the_angle_style().to_radians(t));
}
double Csc(double t)
{
return 1.0/std::sin(the_angle_style().to_radians(t));
}
double Cot(double t)
{
return 1.0/std::tan(the_angle_style().to_radians(t));
}
// and inverses
double Acos(double arg)
{
return std::acos(arg)/the_angle_style().to_radians(1);
}
double Asin(double arg)
{
return std::asin(arg)/the_angle_style().to_radians(1);
}
double Atan(double arg)
{
return std::atan(arg)/the_angle_style().to_radians(1);
}
double Atan2(double y, double x)
{
return std::atan2(y, x)/the_angle_style().to_radians(1);
}
// Additional hyperbolic tric functions and inverses
double sech(double x)
{
return 1.0/cosh(x);
}
double csch(double x)
{
return 1.0/sinh(x);
}
double coth(double x)
{
return 1.0/tanh(x);
}
double asech(double x)
{
return log((1+sqrt((1-x)*(1+x)))/x);
}
double acsch(double x)
{
return log((1+sqrt(1+x*x))/x);
}
double acoth(double x)
{
return 0.5*log((x+1)/(x-1));
}
double zero(double arg)
{
return 0;
}
double zero(double x, double y)
{
return 0;
}
double zero(double x, double y, double z)
{
return 0;
}
double zero(const P& arg)
{
return 0;
}
P xyz(double x, double y, double z)
{
return P(x, y, z);
}
P cyl(double r, double t, double z)
{
return P(r*Cos(t), r*Sin(t), z);
}
P sph(double r, double t, double phi)
{
return P(r*(Cos(t))*(Cos(phi)), r*(Sin(t))*(Cos(phi)), r*(Sin(phi)));
}
P log_log(double x, double y, double z)
{
return P(log10(x), log10(y), z);
}
P log_lin(double x, double y, double z)
{
return P(log10(x), y, z);
}
P lin_log(double x, double y, double z)
{
return P(x, log10(y), z);
}
// for plot templates, arg mustn't be const P&
P cylindrical(P arg)
{
return cyl(arg.x1(), arg.x2(), arg.x3());
}
P spherical(P arg)
{
return sph(arg.x1(), arg.x2(), arg.x3());
}
P polar(double r, double t)
{
return cyl(r, t, 0);
}
P cis(double t)
{
return cyl(1, t, 0);
}
double recip (double x)
{
return 1.0/x;
}
// sin(x)/x
double sinx (double x)
{
if (1. + x*x == 1.) // from Don Hatch
return 1.;
else
return Sin(x)/the_angle_style().to_radians(x);
}
// signum, x/|x|, defined to be 0 at 0
double sgn (double x)
{
if (x > 0)
return 1;
else if (x < 0)
return -1;
else
return 0;
}
// Charlie Brown: Period-2 extension of |x| on [-1,1] /\/\/\/\/\/
double cb (double x)
{
x = fabs(x);
x -= 2*floor(0.5*x);
return min(x, 2-x);
}
// N.B.: gcd(0,i) = |i|
int gcd (int i, int j)
{
int temp;
i=abs(i);
j=abs(j);
if (i==0 || j==0) // (1,0) and (0,1) coprime, others not
return i+j;
else {
if (j < i) // swap them
{
temp = j;
j=i;
i=temp;
}
// Euclidean algorithm
while ((temp = j%i)) // i does not evenly divide j
{
j=i;
i=temp;
}
return i;
}
}
double min(double a, double b)
{
return a < b ? a : b;
}
double max(double a, double b)
{
return b < a ? a : b;
}
double snip_to(double var, double arg1, double arg2)
{
if (var < min(arg1, arg2))
var = min(arg1,arg2);
else if (var > max(arg1, arg2))
var = max(arg1,arg2);
return var;
}
// inf and sup of f on [a,b]
double inf (double f(double), double a, double b)
{
const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
double y(f(a));
const double dx((b-a)/(N*EPIX_ITERATIONS));
for (unsigned int i=1; i <= N*EPIX_ITERATIONS; ++i)
y = min(y, f(a + i*dx));
return y;
}
double sup (double f(double), double a, double b)
{
const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
double y(f(a));
const double dx((b-a)/(N*EPIX_ITERATIONS));
for (unsigned int i=1; i <= N*EPIX_ITERATIONS; ++i)
y = max(y, f(a + i*dx));
return y;
}
// Integral class helper
double integrand(double f(double), double t, double dt)
{
return (1.0/6)*(f(t) + 4*f(t+0.5*dt)+f(t + dt))*dt;
} // Simpson's rule
Integral::Integral(double func(double), double a)
: f(func), x0(a) { }
double Integral::eval(double t) const
{
double sum(0);
const int N(16*(int)ceil(fabs(t - x0))); // hardwired constant 16
if (N > 0)
{
const double dx((t - x0)/N);
for (int i=0; i < N; ++i)
sum += integrand(f, x0+i*dx, dx);
}
return sum;
}
P Integral::operator() (const P& arg) const
{
double t(arg.x1());
return P(t, eval(t), 0);
}
double newton (double f(double), double g(double), double start)
{
double guess(start);
int count(0); // number of iterations
// Magic number 5
const int ITERS(5);
while ( (fabs(f(guess)-g(guess)) > EPIX_EPSILON) && (count < ITERS) )
{
if (fabs(deriv(f, guess)-deriv(g, guess)) < EPIX_EPSILON)
{
epix_warning("Returning critical point in Newton's method");
return guess;
}
guess -= (f(guess)-g(guess))/(deriv(f, guess)-deriv(g, guess));
++count;
}
if (count == ITERS)
epix_warning("Maximum number of iterations in Newton's method");
return guess;
}
double newton (double f(double), double start)
{
return newton(f, zero, start);
}
// Member functions
Deriv::Deriv(double func(double))
: f(func), dt(EPIX_EPSILON) { }
Deriv::Deriv(double func(double), double eps)
: f(func), dt(eps) { }
P Deriv::operator() (const P& arg) const
{
double t(arg.x1());
return P(t, deriv(f, t, dt), 0);
}
double Deriv::eval(double t) const
{
return deriv(f, t, dt);
}
// one-sided derivatives
double Deriv::right(double t) const
{
return (2.0/dt)*(f(t+0.5*dt) - f(t));
}
double Deriv::left(double t) const
{
return (2.0/dt)*(f(t) - f(t-0.5*dt));
}
} // end of namespace
|