1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* triples.cc -- ePiX::P class
*
* This file is part of ePiX, a C++ library for creating high-quality
* figures in LaTeX
*
* Version 1.2.17
* Last Change: July 20, 2017
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2017
* Andrew D. Hwang <ahwang -at- holycross -dot- edu>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <cmath>
#include "constants.h"
#include "errors.h"
#include "Complex.h"
#include "triples.h"
namespace ePiX {
P::P(double arg1, double arg2, double arg3)
: m_x1(arg1), m_x2(arg2), m_x3(arg3) { }
P::P(const Complex& arg)
: m_x1(arg.re()), m_x2(arg.im()), m_x3(0) { }
double P::x1() const
{
return m_x1;
}
double P::x2() const
{
return m_x2;
}
double P::x3() const
{
return m_x3;
}
bool P::is_valid() const
{
using std::isnan;
using std::isinf;
return
!isinf(m_x3) && !isnan(m_x3)
&& !isinf(m_x2) && !isnan(m_x2)
&& !isinf(m_x1) && !isnan(m_x1);
}
// increment operators
P& P::operator += (const P& arg)
{
m_x1 += arg.m_x1;
m_x2 += arg.m_x2;
m_x3 += arg.m_x3;
return *this;
}
P& P::operator -= (const P& arg)
{
m_x1 -= arg.m_x1;
m_x2 -= arg.m_x2;
m_x3 -= arg.m_x3;
return *this;
}
// scalar multipication
P& P::operator *= (double c)
{
m_x1 *= c;
m_x2 *= c;
m_x3 *= c;
return *this;
}
// cross product
P& P::operator *= (const P& v)
{
P temp(*this);
m_x1 = (temp.m_x2 * v.m_x3 - temp.m_x3 * v.m_x2);
m_x2 = (temp.m_x3 * v.m_x1 - temp.m_x1 * v.m_x3);
m_x3 = (temp.m_x1 * v.m_x2 - temp.m_x2 * v.m_x1);
return *this;
}
// componentwise product
P& P::operator &= (const P& v)
{
m_x1 *= v.m_x1;
m_x2 *= v.m_x2;
m_x3 *= v.m_x3;
return *this;
}
// orthogonalization: u %= v is the vector of the form u-k*v perp to v
P& P::operator%= (const P& v)
{
double denom(v.m_x1*v.m_x1 + v.m_x2*v.m_x2 + v.m_x3*v.m_x3);
if (denom < EPIX_EPSILON)
{
epix_warning("Orthogonalizing by zero vector, no action");
return *this;
}
// else c=(u|v)/(v|v)
double c((m_x1*v.m_x1 + m_x2*v.m_x2 + m_x3*v.m_x3)/denom);
m_x1 -= c*v.m_x1;
m_x2 -= c*v.m_x2;
m_x3 -= c*v.m_x3;
return *this;
}
// end of class functions
// vector space operations
P operator- (P u)
{
return u *= -1;
}
P operator+ (P u, const P& v)
{
return u += v;
}
P operator- (P u, const P& v)
{
return u -= v;
}
// scalar multiplication
P operator* (double c, P v)
{
return v *= c;
}
// cross product
P operator* (P u, const P& v)
{
return u *= v;
}
P J(P arg)
{
// E_3 * arg, but E_3 is const
return arg *= -E_3;
}
// dot product
double operator | (const P& u, const P& v)
{
return u.x1()*v.x1() + u.x2()*v.x2() + u.x3()*v.x3();
}
double norm(const P& u)
{
return sqrt(u|u);
}
// componentwise product (a,b,c)&(x,y,z)=(ax,by,cz)
P operator& (P u, const P& v)
{
return u &= v;
}
P operator% (P u, const P& v)
{
return u %= v;
}
// (in)equality
bool operator == (const P& u, const P& v)
{
return (norm(u-v) < EPIX_EPSILON);
}
bool operator != (const P& u, const P& v)
{
return !(u==v);
}
} // end of namespace
|