1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/*
* functions.cc -- non-standard mathematical functions
*
* This file is part of ePiX, a preprocessor for creating high-quality
* line figures in LaTeX
*
* Version 1.0.16
* Last Change: October 14, 2006
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <string>
#include <cmath>
#include "globals.h"
#include "errors.h"
#include "triples.h"
#include "functions.h"
namespace ePiX {
// trig functions with angle units
double cos(double t) { return std::cos(angle(t)); }
double sin(double t) { return std::sin(angle(t)); }
double tan(double t) { return std::tan(angle(t)); }
// non-mathematical behavior (i.e. vanishing:) at poles
double sec(double t) { return recip(std::cos(angle(t))); }
double csc(double t) { return recip(std::sin(angle(t))); }
double cot(double t) { return recip(std::tan(angle(t))); }
// and inverses
double acos(double arg) { return std::acos(arg)/angle(1); }
double asin(double arg) { return std::asin(arg)/angle(1); }
double atan(double arg) { return std::atan(arg)/angle(1); }
double Cos(double t) { return ePiX::cos(t); }
double Sin(double t) { return ePiX::sin(t); }
double Tan(double t) { return ePiX::tan(t); }
double Sec(double t) { return ePiX::sec(t); }
double Csc(double t) { return ePiX::csc(t); }
double Cot(double t) { return ePiX::cot(t); }
double Acos(double t) { return ePiX::acos(t); }
double Asin(double t) { return ePiX::asin(t); }
double Atan(double t) { return ePiX::atan(t); }
P xyz(double x, double y, double z)
{
return P(x, y, z);
}
P cyl(double r, double t, double z)
{
return P(r*ePiX::cos(t), r*ePiX::sin(t), z);
}
P sph(double r, double t, double phi)
{
return P(r*(Cos(t))*(Cos(phi)), r*(Sin(t))*(Cos(phi)), r*(Sin(phi)));
}
P cylindrical(P arg)
{
return cyl(arg.x1(), arg.x2(), arg.x3());
}
P spherical(P arg)
{
return sph(arg.x1(), arg.x2(), arg.x3());
}
P polar(double r, double t)
{
return cyl(r, t, 0);
}
P cis(double t)
{
return cyl(1, t, 0);
}
// Force double to [0,1]
double clip_to_unit(double t)
{
if (t < 0) return 0;
else if (t > 1) return 1;
else return t;
}
// reciprocal, truncated to 0 near 0
double recip (double x)
{
if (fabs(x) < 1.0/EPIX_INFTY)
return 0;
else
return 1/x;
}
// sin(x)/x
double sinx (double x)
{
if (1. + x*x == 1.) // from Don Hatch
return 1.;
else
return Sin(x)/angle(x);
}
// signum, x/|x|, defined to be 0 at 0
double sgn (double x)
{
if (x > 0)
return 1;
else if (x < 0)
return -1;
else
return 0;
}
// Charlie Brown: Period-2 extension of |x| on [-1,1] /\/\/\/\/\/
double cb (double x)
{
x = fabs(x);
x -= 2*floor(0.5*x);
return min(x, 2-x);
}
// N.B.: gcd(0,i) = |i|
int gcd (int i, int j)
{
int temp;
i=abs(i);
j=abs(j);
if (i==0 || j==0) // (1,0) and (0,1) coprime, others not
return i+j;
else {
if (j < i) // swap them
{
temp = j;
j=i;
i=temp;
}
// Euclidean algorithm
while ((temp = j%i)) // i does not evenly divide j
{
j=i;
i=temp;
}
return i;
}
}
double min(const double a, const double b)
{
return a < b ? a : b;
}
double max(const double a, const double b)
{
return b < a ? a : b;
}
double snip_to(double var, const double arg1, const double arg2)
{
if (var < min(arg1, arg2))
var = min(arg1,arg2);
else if (var > max(arg1, arg2))
var = max(arg1,arg2);
return var;
}
// inf and sup of f on [a,b]
double inf (double f(double), double a, double b)
{
const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
double y(f(a));
const double dx((b-a)/(N*EPIX_ITERATIONS));
for (int i=1; i <= N*EPIX_ITERATIONS; ++i)
y = min(y, f(a + i*dx));
return y;
}
double sup (double f(double), double a, double b)
{
const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
double y(f(a));
const double dx((b-a)/(N*EPIX_ITERATIONS));
for (int i=1; i <= N*EPIX_ITERATIONS; ++i)
y = max(y, f(a + i*dx));
return y;
}
// Integral class helper
double integrand(double f(double), double t, double dt)
{
return (1.0/6)*(f(t) + 4*f(t+0.5*dt)+f(t + dt))*dt;
} // Simpson's rule
Integral::Integral(double func(double), double a)
: f(func), x0(a) { }
double Integral::eval(const double t) const
{
double sum(0);
const int N(16*(int)ceil(fabs(t - x0))); // hardwired constant 16
if (N > 0)
{
const double dx((t - x0)/N);
for (int i=0; i < N; ++i)
sum += integrand(f, x0+i*dx, dx);
}
return sum;
}
P Integral::operator() (const P& arg) const
{
double t(arg.x1());
return P(t, eval(t), 0);
}
double newton (double f(double), double g(double), double start)
{
double guess(start);
int count(0); // number of iterations
// Hardwired constant 5
const int ITERS(5);
while ( (fabs(f(guess)-g(guess)) > EPIX_EPSILON) && (count < ITERS) )
{
if (fabs(deriv(f, guess)-deriv(g, guess)) < EPIX_EPSILON)
{
epix_warning("Returning critical point in Newton's method");
return guess;
}
guess -= (f(guess)-g(guess))/(deriv(f, guess)-deriv(g, guess));
++count;
}
if (count == ITERS)
epix_warning("Maximum number of iterations in Newton's method");
return guess;
}
double newton (double f(double), double start)
{
return newton(f, zero, start);
}
// Member functions
Deriv::Deriv(double func(double), const double eps)
: f(func), dt(eps) { }
P Deriv::operator() (const P& arg) const
{
double t(arg.x1());
return P(t, deriv(f, t, dt), 0);
}
double Deriv::eval(const double t) const
{
return deriv(f, t, dt);
}
// one-sided derivatives
double Deriv::right(const double t) const
{
return (2.0/dt)*(f(t+0.5*dt) - f(t));
}
double Deriv::left(const double t) const
{
return (2.0/dt)*(f(t) - f(t-0.5*dt));
}
} // end of namespace
|