File: path.cc

package info (click to toggle)
epix1 1.0.19-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 3,432 kB
  • ctags: 1,529
  • sloc: cpp: 8,250; sh: 4,716; lisp: 667; makefile: 229
file content (786 lines) | stat: -rw-r--r-- 19,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/* 
 *  path.cc -- ePiX classes for polygons and paths
 *
 * This file is part of ePiX, a preprocessor for creating high-quality 
 * line figures in LaTeX 
 *
 * Version 1.0.18
 * Last Change: October 21, 2006
 */

/* 
 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
 * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 * Department of Mathematics and Computer Science
 * College of the Holy Cross
 * Worcester, MA, 01610-2395, USA
 */

/*
 * ePiX is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ePiX is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 * License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with ePiX; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <cstdarg>
#include <iostream>
#include <sstream>

#include <vector>
#include <list>
#include <algorithm>
#include <cmath>

#include "globals.h"
#include "triples.h"
#include "lengths.h"
#include "camera.h"

#include "cropping.h"
#include "sphere.h"
#include "objects.h"
#include "output.h"

#include "path.h"

namespace ePiX {

  extern epix_camera camera;

  // utility functions
  void dash_start(const P& arg1, const P& arg2)
  {
    start_path();
    print(arg1);
    print(arg1 + 0.5*epix::get_dashfill()*(arg2-arg1));
  }

  void dash_seg(const P& arg0, const P& arg1, const P& arg2)
  {
    double fill(0.5*epix::get_dashfill());

    start_path();
    print(arg1 + fill*(arg0-arg1));
    print(arg1);
    print(arg1 + fill*(arg2-arg1));
  }

  void print(std::ostringstream& s, const P location)
  {
    pair out(truncate(c2p(camera(location))));
    s << '(' << out.x1() << ',' << out.x2() << ')';
  }

  //// vertex functions ////
  vertex::vertex(const double a1, const double a2, const double a3)
    : location(a1,a2,a3), onscreen(true), in_world(true) { }

  vertex::vertex(const P& arg)
    : location(arg), onscreen(true), in_world(true) { }

  P vertex::here(void) const
  {
    return location;
  }
  bool vertex::is_onscreen(void) const
  {
    return onscreen;
  }
  bool vertex::is_in_world(void) const
  {
    return in_world;
  }

  void vertex::set_crop(const bool arg)
  {
    onscreen = !arg;
  }
  void vertex::set_clip(const bool arg)
  {
    in_world = !arg;
  }

  ////  path functions ////

  path::path(const std::vector<vertex>& data, bool loop)
    : vertices(data), closed(loop), filled(epix::fill_paths) { }

  path::path(unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts)),
      closed(false), filled(epix::fill_paths) { }

  // lines, without and with specified number of points
  path::path(const P& tail, const P& head, const double expand)
    : closed(false), filled(false)
  {
    double c(expm1(M_LN2*expand/100.0)); // 2^{expand/100} - 1
    P dir(head - tail);

    if (epix::path_style() == SOLID)
      {
	std::vector<vertex> data(2);
  
	data.at(0) = vertex(tail - (0.5*c)*dir);
	data.at(1) = vertex(head + (0.5*c)*dir);

	swap(vertices, data);
      }

    else // DASHED or DOTTED
      {
	// estimate number of points
	// screen distance from (expanded) tail to head, in true pt
	double dist(norm(p2t(c2s((1+c)*(camera(head) - camera(tail))))));

	unsigned int num_pts((unsigned int) ceil(dist/epix::get_dashlength()));

	std::vector<vertex> data(num_pts+1);
  
	// starting location
	P start(tail - (0.5*c)*dir);

	dir *= ((1+c)/num_pts);

	for (unsigned int i=0; i < data.size(); ++i, start += dir)
	  data.at(i) = vertex(start);

	swap(vertices, data);
      }
  } // end of line constructor

  
  path::path(const P& tail, const P& head, 
	     const double expand, unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts+1)),
      closed(false), filled(false)
  {
    double c(expm1(M_LN2*expand/100.0)); // 2^{expand/100} - 1

    // direction and starting location
    P dir(head - tail);
    P start(tail - (0.5*c)*dir);

    dir *= ((1+c)/num_pts);

    for (unsigned int i=0; i < num_pts+1; ++i, start += dir)
      vertices.at(i) = vertex(start);

  } // end of line constructor


  // finite-data paths (ellipse, spline)
  path::path(const P& center, const P& axis1, const P& axis2, 
	     const double t_min, const double t_max,
	     unsigned int default_num_pts)
    : closed(false), filled(epix::fill_paths)
  {
    // default_num_pts = one full turn
    double frac(fabs(t_max-t_min)/(epix::full_turn()));
    unsigned int num_pts((unsigned int) max(1, ceil(frac*default_num_pts)));

    std::vector<vertex> data(num_pts+1);

    const double dt((t_max - t_min)/num_pts);
    double t(t_min);

    for (unsigned int i=0; i < num_pts+1; ++i, t += dt) 
      data.at(i) = vertex(center + ((Cos(t)*axis1)+(Sin(t)*axis2)));

    if (fabs(frac - 1) < EPIX_EPSILON) // one full turn?
      {
	data.pop_back();
	closed = true;
      }

    swap(vertices, data);
  } // end of ellipse constructor


  // Splines
  P spl_pt(const P& p1, const P& p2, const P& p3, double t)
  {
    return t*t*p1 + 2*t*(1-t)*p2 + (1-t)*(1-t)*p3;
  }

  P spl_pt(const P& p1, const P& p2, const P& p3, const P& p4, double t)
  {
    double s(1-t);
    return t*t*t*p1 + 3*t*t*s*p2 + 3*t*s*s*p3 + s*s*s*p4;
  }


  path::path(const P& p1, const P& p2, const P& p3, unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts+1)),
      closed(false), filled(false)
  {
    const double dt(1.0/num_pts);

    for (unsigned int i=0; i < vertices.size(); ++i) 
      vertices.at(i) = spl_pt(p1, p2, p3, i*dt);
  }


  path::path(const P& p1, const P& p2, const P& p3, const P& p4,
	     unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts+1)),
      closed(false), filled(false)
  {
    const double dt(1.0/num_pts);

    for (unsigned int i=0; i < vertices.size(); ++i) 
      vertices.at(i) = spl_pt(p1, p2, p3, p4, i*dt);
  }

  path::path(P f(double), double t_min, double t_max, unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts+1)),
      closed(false), filled(false)
  {
    const double dt((t_max - t_min)/num_pts);
    double t(t_min);

    for (unsigned int i=0; i <= num_pts; ++i, t += dt) 
      vertices.at(i) = vertex(f(t));
  }

  path::path(double f(double), double t_min, double t_max,
	     unsigned int num_pts)
    : vertices(std::vector<vertex> (num_pts+1)),
      closed(false), filled(false)
  {
    const double dt((t_max - t_min)/num_pts);
    double t(t_min);

    for (unsigned int i=0; i <= num_pts; ++i, t += dt) 
      vertices.at(i) = vertex(P(t,f(t)));
  }


  // append a point
  path& path::pt(const double x, const double y, const double z)
  {
    vertices.push_back(vertex(P(x, y, z)));
    return *this;
  }

  path& path::pt(const P& loc)
  {
    vertices.push_back(vertex(loc));
    return *this;
  }


  // concatenate
  path& path::operator+= (const path& data)
  {
    unsigned int my_size(vertices.size());
    vertices.resize(my_size + data.vertices.size());

    for(unsigned int i=0; i < data.vertices.size(); ++i)
      vertices.at(my_size+i) = data.vertices.at(i);

    return *this;
  }

  path& path::operator-= (const path& data)
  {
    unsigned int my_size(vertices.size());
    vertices.resize(my_size+data.vertices.size());

    for(unsigned int i=0; i < data.vertices.size(); ++i)
      vertices.at(my_size + data.vertices.size()-1-i) = data.vertices.at(i);

    return *this;
  }

  path& path::close(const bool arg)
  {
    closed = arg;
    return *this;
  }
  path& path::fill(const bool arg)
  {
    filled = arg;
    return *this;
  }
  path& path::set_fill(const bool arg) // legacy name
  {
    filled = arg;
    return *this;
  }


  // path (un)cropping, (un)clipping, and printing
  void path::set_crop_all(const bool arg)
  {
    for (unsigned int i=0; i < vertices.size(); ++i)
      vertices.at(i).set_crop(arg);
  }

  void path::set_clip_all(const bool arg)
  {
    for (unsigned int i=0; i < vertices.size(); ++i)
      vertices.at(i).set_clip(arg);
  }


  void path::crop_to(const crop_mask& screen, const bool arg)
  {
    vertex curr;
    for (unsigned int i=0; i < vertices.size(); ++i)
      {
	curr = vertices.at(i);
	// if arg=true and curr is in screen, or arg=false and curr not in
	vertices.at(i).set_crop( (screen.is_onscreen(curr.here()) != arg) );
      }
  } // end of crop_to(screen)


  void path::clip_to(const enclosure& world, const bool arg)
  {
    vertex curr;
    for (unsigned int i=0; i < vertices.size(); ++i)
      {
	curr = vertices.at(i);
	vertices.at(i).set_clip( (world.is_inside(curr.here()) != arg) );
      }
  } // end of clip_to(world)


  // Algorithm to draw path:
  // 1. Close path, crop, and clip vector of vertices if necessary
  // 2. Find starts and ends of path segments by examining visibility of
  //    current and previous points and whether or not we're already in
  //    a path segment. End result is a linked list of vertices with ends
  //    of path segments marked.
  // 3. Check list to see if list is non-empty. If not, check for filling,
  //    and print data points to output.
  //
  void path::draw()
  {
    if(closed)
      vertices.push_back(vertices.at(0));

    // mark vertices for removal
    if (epix::cropping)
      crop_to(crop_mask::Crop_Box);

    if (epix::clipping)
      clip_to(enclosure::Clip_Box);

    vertex prev, curr; //, next;
    P temp_path_end;

    bool prev_visible, curr_visible; //, next_visible;

    bool started(false); // in "draw" mode when we examined curr?
    epix_path_style STYLE(epix::path_style());

    std::list<path_pt> segments;

    // cull vertices, mark as start/end of path segments
    for (unsigned int i=0; i < vertices.size(); ++i)
      {
	// get prev, curr, next
	curr = vertices.at(i);
	curr_visible = (curr.is_onscreen() && curr.is_in_world());

	if (0 < i)
	  {
	    prev = vertices.at(i-1);
	    prev_visible = (prev.is_onscreen() && prev.is_in_world());
	  }
	else prev = curr;

	// four cases: "started" is (un)set and curr is (in)visible
	if (curr_visible)
	  {
	    if (started)
	      {
		if (i < vertices.size() - 1)
		  segments.push_back(path_pt(curr, false, false));
		else
		  segments.push_back(path_pt(curr, false, true));
	      }
	    else // start path segment
	      {
		temp_path_end = seek_path_end(curr.here(), prev.here());
		segments.push_back(path_pt(temp_path_end, true, false));
		if (curr.here() != prev.here())
		  segments.push_back(path_pt(curr, false, false));
		started = true;
	      }
	  } // end of curr_visible; started = true in all cases

	else
	  {
	    if (started) // end path
	      {
		temp_path_end = seek_path_end(prev.here(), curr.here());
		segments.push_back(path_pt(temp_path_end, false, true));
		started = false;
	      }
	  } // if !started, do nothing

      } // end of for loop to cull vertices

    std::list<path_pt>::iterator p = ++segments.begin();
    std::list<path_pt>::iterator q, q2;

    if (p == segments.end())
      return; // empty path

    if (this->filled) // remove start/end flags except global first/last
      while (p++ != segments.end())
	p->unset();

    // Write fill \special if necessary; pstricks handles its own filling
    if (this->filled && SOLID == STYLE && !epix::using_pstricks)
      std::cout << "\n\\special{sh " << epix::get_gray() << "}%";

    // print path
    switch (STYLE) 
      {
      case DOTTED:

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    newl();
	    box((p->here()));
	  }
	break;


      case DASHED:

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    q = q2 = p;
	    {
	      if (p->is_start())
		{
		  dash_start(q2->here(), (++q)->here());
		}
	      else if (p->is_end())
		{
		  dash_start(q2->here(), (--q)->here());
		}
	      else
		{
		  dash_seg((--q2)->here(), p->here(), (++q)->here());
		}
	    }
	  }
	break;

      case SOLID: // fall through
      default:

	std::ostringstream outbuf;

	int temp_size;          // number of characters in current point
	int pt_count(0);        // points printed so far in path segment
	int curr_line_count(0); // characters so far in this line

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    std::ostringstream temp;         // empty buffer for point
	    print (temp, p->here());         // examine point
	    temp_size = temp.str().length(); // get length as a string
	    
	    if (p->is_start())
	      {
		outbuf << start_path_string();
		print (outbuf, p->here());
		curr_line_count=5+temp_size; // off by 2 if using_pstricks
	      }

	    else
	      {
		// reached maximum line length?
		if ((curr_line_count >= EPIX_FILE_WIDTH) || 
		    (curr_line_count + temp_size > EPIX_FILE_WIDTH + 5))
		  {
		    outbuf << "\n  ";
		    curr_line_count = 2; // reset number of characters
		  }

		outbuf << temp.str(); // "routine" outcome
		++pt_count;
		curr_line_count += temp_size;

		// break path segment to avoid TeX memory overflow?
		if (0 == (pt_count%EPIX_PATH_LENGTH) && (pt_count > 0)
		    && !(this->filled)) // don't break filled paths
		  {
		    outbuf << start_path_string() << temp.str();
		    pt_count = 1;      // reset count and number of characters
		    curr_line_count = 5 + temp_size; 
		  }
	      } // not start of path

	    if (p->is_end())
	      {
		outbuf << end_path_string();
	      }

	  } // end of for loop; outbuf contains formatted output
	std::cout << outbuf.str();

	break;

      } // end of switch(STYLE)

  } // end of path::draw()


  // 10/09/06: You *really* don't want to look in here...
  void path::draw(sphere S, bool front)
  {
    if (closed)
      vertices.push_back(vertices.at(0));

    if (epix::cropping)
      crop_to(crop_mask::Crop_Box);

    if (epix::clipping)
      clip_to(enclosure::Clip_Box);

    vertex prev, curr, next;
    bool prev_visible, curr_visible, next_visible;

    bool started(false); // in "draw" mode when we examined curr?
    epix_path_style STYLE(epix::path_style());

    std::list<path_pt> segments;

    // cull vertices, mark as start/end of path segments
    for (unsigned int i=0; i < vertices.size(); ++i)
      {
	// get prev, curr, next
	curr = vertices.at(i);
	curr_visible = (curr.is_onscreen() && curr.is_in_world() &&
			visible_on_sphere(curr.here(), front, S));

	if (0 < i)
	  {
	    prev = vertices.at(i-1);
	    prev_visible = (prev.is_onscreen() && prev.is_in_world());
	  }
	else 
	  {
	    prev = curr;
	    prev_visible = false;
	  }

	if (i < vertices.size()-1)
	  {
	    next = vertices.at(i+1);
	    next_visible = (next.is_onscreen() && next.is_in_world() &&
			    visible_on_sphere(next.here(), front, S));
	  }
	else
	  {
	    next = curr;
	    next_visible = false;
	  }

	// four cases: "started" is (un)set and curr is (in)visible
	if (curr_visible)
	  {
	    if (started)
	      {
		if (i < vertices.size() - 1)
		  segments.push_back(path_pt(curr, false, false));
		else
		  segments.push_back(path_pt(curr, false, true));
	      }
	    else // start path segment
	      {
		// loss of accuracy; don't seek edge of sphere
		segments.push_back(path_pt(prev.here(), true, false));
		if (curr.here() != prev.here())
		  segments.push_back(path_pt(curr, false, false));
		started = true;
	      }
	  } // end of curr_visible; started = true in all cases

	else
	  {
	    if (started) // end path
	      {
		// loss of accuracy; don't seek edge of sphere
		segments.push_back(path_pt(curr.here(), false, true));
		started = false;
	      }
	  } // if !started, do nothing

      } // end of for loop to cull vertices

    std::list<path_pt>::iterator p = ++segments.begin();
    std::list<path_pt>::iterator q, q2;

    if (p == segments.end())
      return; // empty path

    if (filled) // remove start/end flags except global first/last
      while (p++ != segments.end())
	p->unset();

    // Write fill \special if necessary; pstricks handles its own filling
    if (filled && SOLID == STYLE && !epix::using_pstricks)
      std::cout << "\n\\special{sh " << epix::get_gray() << "}%";

    // print path
    switch (STYLE) 
      {
      case DOTTED:

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    newl();
	    box((p->here()));
	  }
	break;


      case DASHED:

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    q = q2 = p;
	    {
	      if (p->is_start())
		{
		  dash_start(q2->here(), (++q)->here());
		}
	      else if (p->is_end())
		{
		  dash_start(q2->here(), (--q)->here());
		}
	      else
		{
		  dash_seg((--q2)->here(), p->here(), (++q)->here());
		}
	    }
	  }
	break;

      case SOLID: // fall through
      default:

	std::ostringstream outbuf;

	int temp_size;            // number of characters in current point
	int pt_count(0);          // points printed so far in path segment
	int curr_line_count(0);   // characters so far in this line

	for (p = segments.begin(); p != segments.end(); ++p)
	  {
	    std::ostringstream temp;         // empty buffer for point
	    print (temp, p->here());         // examine point
	    temp_size = temp.str().length(); // get length as a string
	    
	    if (p->is_start())
	      {
		outbuf << start_path_string();
		print (outbuf, p->here());
		curr_line_count=5+temp_size; // off by 2 if using_pstricks
	      }

	    else
	      {
		// reached maximum line length?
		if ((curr_line_count >= EPIX_FILE_WIDTH) || 
		    (curr_line_count + temp_size > EPIX_FILE_WIDTH + 5))
		  {
		    outbuf << "\n  ";
		    curr_line_count = 2; // reset number of characters
		  }

		outbuf << temp.str(); // "routine" outcome
		++pt_count;
		curr_line_count += temp_size;

		// break path segment to avoid TeX memory overflow?
		if (0 == (pt_count%EPIX_PATH_LENGTH) && (pt_count > 0)
		    && !(this->filled)) // don't break filled paths
		  {
		    outbuf << start_path_string() << temp.str();
		    pt_count = 1;      // reset count and number of characters
		    curr_line_count = 5 + temp_size; 
		  }
	      } // not start of path

	    if (p->is_end())
	      {
		outbuf << end_path_string();
	      }

	  } // end of for loop; outbuf contains formatted output
	std::cout << outbuf.str();

	break;

      } // end of switch(STYLE)

  } // end of path::draw(sphere S, bool front)


  // global functions
  // polygon/polyline
  path polygon(unsigned int num_pts, ...)
  {
    std::vector<vertex> data(num_pts);

    va_list ap;
    va_start(ap, num_pts);
  
    for (unsigned int i=0; i < num_pts; ++i) 
      data.at(i) = vertex(*va_arg(ap, P*));

    va_end(ap);

    return path(data, true); // closed
  }

  path polyline(unsigned int num_pts, ...)
  {
    std::vector<vertex> data(num_pts);

    va_list ap;
    va_start(ap, num_pts);
  
    for (unsigned int i=0; i < num_pts; ++i) 
      data.at(i) = vertex(*va_arg(ap, P*));

    va_end(ap);

    return path(data, false); // closed
  }


  path_pt::path_pt(const P& arg, bool is_start, bool is_end)
    : location(arg), start(is_start), end(is_end) { }

  path_pt::path_pt(const vertex& arg, bool is_start, bool is_end)
    : location(arg.here()), start(is_start), end(is_end) { }

  void path_pt::unset(void)
  {
    start = end = false;
  }

  P path_pt::here() const { return location; }
  bool path_pt::is_start() const { return start; }
  bool path_pt::is_end()   const { return end; }
} // end of namespace