File: plane.cc

package info (click to toggle)
epix1 1.0.19-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 3,432 kB
  • ctags: 1,529
  • sloc: cpp: 8,250; sh: 4,716; lisp: 667; makefile: 229
file content (205 lines) | stat: -rw-r--r-- 5,113 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* 
 * plane.cc -- ePiX::plane class and mathematical operators
 *
 * This file is part of ePiX, a preprocessor for creating high-quality 
 * line figures in LaTeX 
 *
 * Version 1.0.15
 * Last Change: October 09, 2006
 */

/* 
 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
 * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 * Department of Mathematics and Computer Science
 * College of the Holy Cross
 * Worcester, MA, 01610-2395, USA
 */

/*
 * ePiX is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ePiX is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 * License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with ePiX; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include "globals.h"
#include "errors.h"

#include "circle.h"
#include "polyhedron.h"
#include "segment.h"
#include "sphere.h"

#include "path.h"
#include "curves.h"
#include "cropping.h"
#include "plane.h"

namespace ePiX {

  plane::plane(const P& point, const P& normal)
    : m_pt(point), m_perp(normal)
  { 
    double temp(norm(normal));

    if (temp < EPIX_EPSILON)
      {
	epix_warning("Degenerate plane normal, using (0,0,1)");
	m_perp=E_3;
      }

    else
      m_perp *= 1.0/temp;
  }

  plane::plane(const P& p1, const P& p2, const P& p3)
    : m_pt(p1)
  {
    P perp((p3-p1)*(p2-p1));
    double norm_perp(norm(perp));

    if (norm_perp < EPIX_EPSILON)
      throw constructor_error(COLLINEAR_PTS);

    else
      m_perp = (1/norm_perp)*perp;
  }


  P plane::normal() const
  {
    return m_perp;
  }

  plane& plane::reverse(void) 
  { 
    m_perp *= -1;
    return *this;
  }

  plane& plane::operator += (const P& arg)
  {
    m_pt += arg;
    return *this;
  }

  double plane::height(const P& arg) const
  {
    return (arg-m_pt)|m_perp;
  }

  bool plane::contains(const P& arg) const
  { 
    return (fabs(height(arg)) < EPIX_EPSILON); 
  }

  bool plane::separates(const P& arg1, const P& arg2) const
  {
    return (height(arg1)*height(arg2) <= 0 );
  }

  bool plane::parallel_to (const plane& arg) const
  {
    return (norm(m_perp*arg.m_perp)<EPIX_EPSILON);
  }

  bool plane::operator== (const plane& arg) const
  {
    // normals parallel and arg.m_pt lies in *this
    return ( parallel_to(arg) && ((m_pt - arg.m_pt)|m_perp) < EPIX_EPSILON);
  }

  P operator* (const plane& knife, const segment& seg)
  {
    P tail(seg.end1()), head(seg.end2());

    double ptail(knife.height(tail)), phead(knife.height(head));

    return tail + (ptail/(ptail-phead))*(head-tail);
  }

  // draw Line of intersection between non-parallel planes
  void plane::operator* (const plane& P1) const
  {
    P N3((P1.m_perp)*m_perp);
    double temp(norm(N3));

    if (temp < EPIX_EPSILON)
      throw join_error(PARALLEL);

    else  // N3 non-zero, parallel to intersection
      {
	N3 *= 1/temp; // normalize

	P perp((P1.m_perp)*N3); // unit vector in P1, perp to intersection
	P point(P1.m_pt + (((m_pt-P1.m_pt)|m_perp)/(perp|m_perp))*perp);

	Line(point, point+N3); // draw line through points
      }
  }

  // intersection
  circle plane::operator* (const sphere& S) const
  {
    double rad(S.radius());
    // signed dist from S.ctr to *this
    double height((m_pt - S.center())|m_perp);

    if (rad < fabs(height))
      throw join_error(SEPARATED);

    else if (rad == fabs(height))
      throw join_error(TANGENT);

    else
      return circle(S.center() + height*m_perp,
		    sqrt((rad - height)*(rad + height)),
		    m_perp);
  }

  void plane::draw() const
  {
    // clip_box vertices
    P vert000(clip1_min(), clip2_min(), clip3_min());
    P vert100(clip1_max(), clip2_min(), clip3_min());
    P vert010(clip1_min(), clip2_max(), clip3_min());
    P vert110(clip1_max(), clip2_max(), clip3_min());

    P vert001(clip1_min(), clip2_min(), clip3_max());
    P vert101(clip1_max(), clip2_min(), clip3_max());
    P vert011(clip1_min(), clip2_max(), clip3_max());
    P vert111(clip1_max(), clip2_max(), clip3_max());

    segment edge00(vert000, vert001);
    segment edge01(vert001, vert011);
    segment edge02(vert011, vert010);
    segment edge03(vert010, vert000);

    segment edge04(vert000, vert100);
    segment edge05(vert001, vert101);
    segment edge06(vert011, vert111);
    segment edge07(vert010, vert110);

    segment edge08(vert100, vert101);
    segment edge09(vert101, vert111);
    segment edge10(vert111, vert110);
    segment edge11(vert110, vert100);

    // and edges
    one_skel walls(12, &edge00, &edge01, &edge02, &edge03, &edge04, &edge05,
		   &edge06, &edge07, &edge08, &edge09, &edge10, &edge11);

    walls.section(*this);
  } // end of plane::draw()

} /* end of namespace */