1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*
* plane.cc -- ePiX::plane class and mathematical operators
*
* This file is part of ePiX, a preprocessor for creating high-quality
* line figures in LaTeX
*
* Version 1.0.15
* Last Change: October 09, 2006
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "globals.h"
#include "errors.h"
#include "circle.h"
#include "polyhedron.h"
#include "segment.h"
#include "sphere.h"
#include "path.h"
#include "curves.h"
#include "cropping.h"
#include "plane.h"
namespace ePiX {
plane::plane(const P& point, const P& normal)
: m_pt(point), m_perp(normal)
{
double temp(norm(normal));
if (temp < EPIX_EPSILON)
{
epix_warning("Degenerate plane normal, using (0,0,1)");
m_perp=E_3;
}
else
m_perp *= 1.0/temp;
}
plane::plane(const P& p1, const P& p2, const P& p3)
: m_pt(p1)
{
P perp((p3-p1)*(p2-p1));
double norm_perp(norm(perp));
if (norm_perp < EPIX_EPSILON)
throw constructor_error(COLLINEAR_PTS);
else
m_perp = (1/norm_perp)*perp;
}
P plane::normal() const
{
return m_perp;
}
plane& plane::reverse(void)
{
m_perp *= -1;
return *this;
}
plane& plane::operator += (const P& arg)
{
m_pt += arg;
return *this;
}
double plane::height(const P& arg) const
{
return (arg-m_pt)|m_perp;
}
bool plane::contains(const P& arg) const
{
return (fabs(height(arg)) < EPIX_EPSILON);
}
bool plane::separates(const P& arg1, const P& arg2) const
{
return (height(arg1)*height(arg2) <= 0 );
}
bool plane::parallel_to (const plane& arg) const
{
return (norm(m_perp*arg.m_perp)<EPIX_EPSILON);
}
bool plane::operator== (const plane& arg) const
{
// normals parallel and arg.m_pt lies in *this
return ( parallel_to(arg) && ((m_pt - arg.m_pt)|m_perp) < EPIX_EPSILON);
}
P operator* (const plane& knife, const segment& seg)
{
P tail(seg.end1()), head(seg.end2());
double ptail(knife.height(tail)), phead(knife.height(head));
return tail + (ptail/(ptail-phead))*(head-tail);
}
// draw Line of intersection between non-parallel planes
void plane::operator* (const plane& P1) const
{
P N3((P1.m_perp)*m_perp);
double temp(norm(N3));
if (temp < EPIX_EPSILON)
throw join_error(PARALLEL);
else // N3 non-zero, parallel to intersection
{
N3 *= 1/temp; // normalize
P perp((P1.m_perp)*N3); // unit vector in P1, perp to intersection
P point(P1.m_pt + (((m_pt-P1.m_pt)|m_perp)/(perp|m_perp))*perp);
Line(point, point+N3); // draw line through points
}
}
// intersection
circle plane::operator* (const sphere& S) const
{
double rad(S.radius());
// signed dist from S.ctr to *this
double height((m_pt - S.center())|m_perp);
if (rad < fabs(height))
throw join_error(SEPARATED);
else if (rad == fabs(height))
throw join_error(TANGENT);
else
return circle(S.center() + height*m_perp,
sqrt((rad - height)*(rad + height)),
m_perp);
}
void plane::draw() const
{
// clip_box vertices
P vert000(clip1_min(), clip2_min(), clip3_min());
P vert100(clip1_max(), clip2_min(), clip3_min());
P vert010(clip1_min(), clip2_max(), clip3_min());
P vert110(clip1_max(), clip2_max(), clip3_min());
P vert001(clip1_min(), clip2_min(), clip3_max());
P vert101(clip1_max(), clip2_min(), clip3_max());
P vert011(clip1_min(), clip2_max(), clip3_max());
P vert111(clip1_max(), clip2_max(), clip3_max());
segment edge00(vert000, vert001);
segment edge01(vert001, vert011);
segment edge02(vert011, vert010);
segment edge03(vert010, vert000);
segment edge04(vert000, vert100);
segment edge05(vert001, vert101);
segment edge06(vert011, vert111);
segment edge07(vert010, vert110);
segment edge08(vert100, vert101);
segment edge09(vert101, vert111);
segment edge10(vert111, vert110);
segment edge11(vert110, vert100);
// and edges
one_skel walls(12, &edge00, &edge01, &edge02, &edge03, &edge04, &edge05,
&edge06, &edge07, &edge08, &edge09, &edge10, &edge11);
walls.section(*this);
} // end of plane::draw()
} /* end of namespace */
|