File: plot_algorithms.h

package info (click to toggle)
epix1 1.0.19-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 3,432 kB
  • ctags: 1,529
  • sloc: cpp: 8,250; sh: 4,716; lisp: 667; makefile: 229
file content (187 lines) | stat: -rw-r--r-- 5,153 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * plot_algorithms.h -- plot function templates, for build use only
 *
 * Andrew D. Hwang   <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 *
 * Version 1.0.16
 * Last Change: October 14, 2006
 *
 */

/* 
 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
 * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 * Department of Mathematics and Computer Science
 * College of the Holy Cross
 * Worcester, MA, 01610-2395, USA
 */

/*
 * ePiX is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ePiX is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 * License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with ePiX; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

/*
 * This file provides plotting templates, with T a class
 *
 *  void plot_map_dom(const T&, const domain&)
 *  void plot_map_domlist(const T&, const std::vector<domain>&)
 *  void plot_function(const T&, double, double, int)
 *  void euler_plot(const T&, const P&, double, double, int)
 *  P    euler_flow(const T&, P start, double, int)
 */

#ifndef EPIX_PLOT_ALGO
#define EPIX_PLOT_ALGO

#include "triples.h"
#include "functions.h"
#include "domain.h"

namespace ePiX {

  template<class T> void plot_map_dom(const T& map, const domain& R)
    {
      int i_max((R.dx1() > 0) ? R.coarse.n1() : 0); // max summation index
      int j_max((R.dx2() > 0) ? R.coarse.n2() : 0);
      int k_max((R.dx3() > 0) ? R.coarse.n3() : 0);

      if (R.dx1() > 0) // there's something to draw
	{
	  int count1(R.fine.n1()); // number of intervals in subdivision
	  std::vector<vertex> data1(1+count1);

	  double st1(R.dx1());
	  double st2(R.step2());
	  double st3(R.step3());

	  for (int j=0; j <= j_max; ++j)
	    for (int k=0; k <= k_max; ++k)
	      {
		P curr(R.corner1 + (j*st2)*E_2 + (k*st3)*E_3);

		for (int i=0; i <= count1; ++i, curr += st1*E_1)
		  data1.at(i) = vertex(map(curr));

		// close path if initial and terminal points coincide
		path path1(data1, false);
		path1.draw();
	      }
	}

      if (R.dx2() > 0)
	{
	  int count2(R.fine.n2());
	  std::vector<vertex> data2(1+count2);

	  double st1(R.step1());
	  double st2(R.dx2());
	  double st3(R.step3());

	  for (int i=0; i <= i_max; ++i)
	    for (int k=0; k <= k_max; ++k)
	      {
		P curr(R.corner1 + (i*st1)*E_1 + (k*st3)*E_3);
	      
		for (int j=0; j <= count2; ++j, curr += st2*E_2)
		  data2.at(j) = vertex(map(curr));

		// close path if initial and terminal points coincide
		path path2(data2, false);
		path2.draw();
	      }
	}

      if (R.dx3() > 0)
	{
	  int count3(R.fine.n3());
	  std::vector<vertex> data3(1+count3);

	  double st1(R.step1());
	  double st2(R.step2());
	  double st3(R.dx3());

	  for (int i=0; i <= i_max; ++i)
	    for (int j=0; j <= j_max; ++j)
	      {
		P curr(R.corner1 + (i*st1)*E_1 + (j*st2)*E_2);

		for (int k=0; k <= count3; ++k, curr += st3*E_3)
		  data3.at(k) = vertex(map(curr));

		// close path if initial and terminal points coincide
		path path3(data3, false);
		path3.draw();
	      }
	}
    }; // end of plot_map_dom

  // plot over a list of domains
  template<class T> void plot_map_domlist(const T& map,
					  const std::vector<domain>& R_list)
    {
      for (unsigned int i=0; i < R_list.size(); ++i)
	plot_map_dom(map, R_list.at(i));
    }

  // paths
  template<class T>void plot_function(const T& f, double t1, double t2, int n)
    {
      plot_map_dom(f, domain(t1, t2, n));
    }


  // Solutions of ODE systems
  template<class VF> void euler_plot(const VF& field, const P& start, 
				     double t_min, double t_max, int num_pts)
  {
    std::vector<vertex> data(num_pts+1);

    P curr(start);
    const double dt(t_max/(num_pts*EPIX_ITERATIONS));
    const double dseek(t_min/(num_pts*EPIX_ITERATIONS));

    if (fabs(t_min/num_pts) > EPIX_EPSILON) // seek beginning of path
      for (int i=0; i <= num_pts*EPIX_ITERATIONS; ++i)
	curr += dseek*field(curr);

    //                             Euler's method ---v
    for (int i=0; i <= num_pts*EPIX_ITERATIONS; ++i, curr += dt*field(curr))
      if (i%EPIX_ITERATIONS == 0)
	data.at(i/EPIX_ITERATIONS) = vertex(curr); // N.B. integer division

    path temp(data, false);

    temp.draw();
    end_stanza();
  } // end of euler_plot


  // flow x0 under field for specified time; pass x0 by value
  template<class VF> P euler_flow(const VF& field, P x0,
				  double t_max, int num_pts=0)
  {
    if (num_pts == 0) // use "sensible" default; hardwired constant 4
      num_pts = 4*(1 + (int)ceil(fabs(t_max)));

    const double dt(t_max/(num_pts*EPIX_ITERATIONS));

    for (int i=0; i <= num_pts*EPIX_ITERATIONS; ++i)
      x0 += dt*field(x0);

    return x0;
  }
} // end of namespace

#endif /* EPIX_PLOT_ALGO */