1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
%% Generated from shadeplot.xp on Tue Feb 28 15:31:53 EST 2006 by
%% ePiX-1.0.6
%%
%% Cartesian bounding box: [0,1] x [0,1]
%% Actual size: 150pt x 150pt
%% Figure offset: right by 120pt, down by 320pt
%%
\setlength{\unitlength}{1pt}
\begin{picture}(150,150)(-120,320)
%% ---
\special{sh 0.1}%
\path(0,119.683)(0.833333,119.668)(1.66667,119.624)(2.5,119.55)
(3.33333,119.447)(4.16667,119.314)(5,119.152)(5.83333,118.961)
(6.66667,118.741)(7.5,118.492)(8.33333,118.214)(9.16667,117.908)
(10,117.574)(10.8333,117.211)(11.6667,116.821)(12.5,116.404)
(13.3333,115.959)(14.1667,115.488)(15,114.99)(15.8333,114.466)
(16.6667,113.916)(17.5,113.341)(18.3333,112.741)(19.1667,112.116)
(20,111.467)(20.8333,110.795)(21.6667,110.1)(22.5,109.382)
(23.3333,108.642)(24.1667,107.88)(25,107.097)(25.8333,106.293)
(26.6667,105.47)(27.5,104.627)(28.3333,103.765)(29.1667,102.885)
(30,101.987)(30.8333,101.072)(31.6667,100.14)(32.5,99.1929)
(33.3333,98.2301)(34.1667,97.2527)(35,96.2613)(35.8333,95.2564)
(36.6667,94.2388)(37.5,93.209)(38.3333,92.1677)(39.1667,91.1155)
(40,90.0531)(40.8333,88.9811)(41.6667,87.9002)(42.5,86.811)
(43.3333,85.7141)(44.1667,84.6101)(45,83.4998)(45.8333,82.3837)
(46.6667,81.2624)(47.5,80.1366)(48.3333,79.0069)(49.1667,77.8739)
(50,76.7382)(50.8333,75.6004)(51.6667,74.461)(52.5,73.3208)
(53.3333,72.1801)(54.1667,71.0397)(55,69.9)(55.8333,68.7617)
(56.6667,67.6251)(57.5,66.491)(58.3333,65.3597)(59.1667,64.2318)
(60,63.1078)(60.8333,61.9881)(61.6667,60.8733)(62.5,59.7638)
(63.3333,58.66)(64.1667,57.5623)(65,56.4713)(65.8333,55.3873)
(66.6667,54.3107)(67.5,53.2418)(68.3333,52.1811)(69.1667,51.1289)
(70,50.0856)(70.8333,49.0514)(71.6667,48.0267)(72.5,47.0118)
(73.3333,46.007)(74.1667,45.0126)(75,44.0288)(75,0)(74.1667,0)(73.3333,0)
(72.5,0)(71.6667,0)(70.8333,0)(70,0)(69.1667,0)(68.3333,0)(67.5,0)
(66.6667,0)(65.8333,0)(65,0)(64.1667,0)(63.3333,0)(62.5,0)(61.6667,0)
(60.8333,0)(60,0)(59.1667,0)(58.3333,0)(57.5,0)(56.6667,0)(55.8333,0)
(55,0)(54.1667,0)(53.3333,0)(52.5,0)(51.6667,0)(50.8333,0)(50,0)
(49.1667,0)(48.3333,0)(47.5,0)(46.6667,0)(45.8333,0)(45,0)(44.1667,0)
(43.3333,0)(42.5,0)(41.6667,0)(40.8333,0)(40,0)(39.1667,0)(38.3333,0)
(37.5,0)(36.6667,0)(35.8333,0)(35,0)(34.1667,0)(33.3333,0)(32.5,0)
(31.6667,0)(30.8333,0)(30,0)(29.1667,0)(28.3333,0)(27.5,0)(26.6667,0)
(25.8333,0)(25,0)(24.1667,0)(23.3333,0)(22.5,0)(21.6667,0)(20.8333,0)
(20,0)(19.1667,0)(18.3333,0)(17.5,0)(16.6667,0)(15.8333,0)(15,0)
(14.1667,0)(13.3333,0)(12.5,0)(11.6667,0)(10.8333,0)(10,0)(9.16667,0)
(8.33333,0)(7.5,0)(6.66667,0)(5.83333,0)(5,0)(4.16667,0)(3.33333,0)
(2.5,0)(1.66667,0)(0.833333,0)(0,0)(0,119.683)
%% ---
\special{sh 0.4}%
\path(75,44.0288)(82.5,44.0288)(82.5,0)(75,0)(75,44.0288)
\special{sh 0.6}%
\path(75,44.0288)(75.75,43.1527)(76.5,42.2855)(77.25,41.4275)(78,40.5787)
(78.75,39.7394)(79.5,38.9097)(80.25,38.0897)(81,37.2795)(81.75,36.4793)
(82.5,35.6891)(82.5,0)(81.75,0)(81,0)(80.25,0)(79.5,0)(78.75,0)(78,0)
(77.25,0)(76.5,0)(75.75,0)(75,0)(75,44.0288)
%% ---
\path(75,119.029)(40.345,52.0991)
\special{sh 1}%
\path(40.345,52.0991)(42.6254,53.241)(37.5,46.6045)(39.9613,54.6204)
(40.345,52.0991)
\put(75,119.029){\makebox(0,0)[bl]{$F(x)=\displaystyle\int_a^x f(t)\,dt$}}
\path(82.5,81.5288)(79.3657,50.1856)
\special{sh 1}%
\path(79.3657,50.1856)(81.0635,52.0886)(78.75,44.0288)(78.0783,52.3871)
(79.3657,50.1856)
\put(82.5,81.5288){\makebox(0,0)[bl]{Area of rectangle = $f(x)\,dx$}}
\path(97.5,44.0288)(85.5757,23.2135)
\special{sh 1}%
\path(85.5757,23.2135)(87.9024,24.2575)(82.5,17.8445)(85.2993,25.7487)
(85.5757,23.2135)
\put(97.5,44.0288){\makebox(0,0)[bl]{Area = $F(x+dx)-F(x)$}}
\thicklines
\path(0,119.683)(1.25,119.649)(2.5,119.55)(3.75,119.384)(5,119.152)
(6.25,118.854)(7.5,118.492)(8.75,118.065)(10,117.574)(11.25,117.02)
(12.5,116.404)(13.75,115.727)(15,114.99)(16.25,114.194)(17.5,113.341)
(18.75,112.431)(20,111.467)(21.25,110.45)(22.5,109.382)(23.75,108.263)
(25,107.097)(26.25,105.884)(27.5,104.627)(28.75,103.327)(30,101.987)
(31.25,100.608)(32.5,99.1929)(33.75,97.7432)(35,96.2613)(36.25,94.7491)
(37.5,93.209)(38.75,91.6429)(40,90.0531)(41.25,88.4417)(42.5,86.811)
(43.75,85.1629)(45,83.4998)(46.25,81.8236)(47.5,80.1366)(48.75,78.4408)
(50,76.7382)(51.25,75.0309)(52.5,73.3208)(53.75,71.6099)(55,69.9)
(56.25,68.1931)(57.5,66.491)(58.75,64.7953)(60,63.1078)(61.25,61.4301)
(62.5,59.7638)(63.75,58.1104)(65,56.4713)(66.25,54.848)(67.5,53.2418)
(68.75,51.6539)(70,50.0856)(71.25,48.5379)(72.5,47.0118)(73.75,45.5085)
(75,44.0288)
\path(75,44.0288)(76.25,42.5735)(77.5,41.1435)(78.75,39.7394)(80,38.362)
(81.25,37.0117)(82.5,35.6891)(83.75,34.3946)(85,33.1287)(86.25,31.8916)
(87.5,30.6837)(88.75,29.5052)(90,28.3562)(91.25,27.2367)(92.5,26.147)
(93.75,25.0869)(95,24.0564)(96.25,23.0554)(97.5,22.0838)(98.75,21.1414)
(100,20.228)(101.25,19.3433)(102.5,18.487)(103.75,17.6588)(105,16.8583)
(106.25,16.0852)(107.5,15.339)(108.75,14.6193)(110,13.9257)
(111.25,13.2575)(112.5,12.6145)(113.75,11.9959)(115,11.4014)
(116.25,10.8303)(117.5,10.282)(118.75,9.75617)(120,9.25204)
(121.25,8.76909)(122.5,8.30673)(123.75,7.86438)(125,7.44145)
(126.25,7.03736)(127.5,6.65151)(128.75,6.28333)(130,5.93223)
(131.25,5.59763)(132.5,5.27898)(133.75,4.9757)(135,4.68724)
(136.25,4.41305)(137.5,4.15259)(138.75,3.90534)(140,3.67076)
(141.25,3.44836)(142.5,3.23764)(143.75,3.0381)(145,2.84928)
(146.25,2.67071)(147.5,2.50194)(148.75,2.34253)
\path(148.75,2.34253)(150,2.19206)
\thinlines
\path(0,0)(150,0)
\put(0,0){\makebox(0,0)[c]{\rule{0.5pt}{4pt}}}
\put(37.5,0){\makebox(0,0)[c]{\rule{0.5pt}{4pt}}}
\put(75,0){\makebox(0,0)[c]{\rule{0.5pt}{4pt}}}
\put(112.5,0){\makebox(0,0)[c]{\rule{0.5pt}{4pt}}}
\put(150,0){\makebox(0,0)[c]{\rule{0.5pt}{4pt}}}
%% ---
\path(0,0)(0,150)
\put(0,0){\makebox(0,0)[c]{\rule{4pt}{0.5pt}}}
\put(0,37.5){\makebox(0,0)[c]{\rule{4pt}{0.5pt}}}
\put(0,75){\makebox(0,0)[c]{\rule{4pt}{0.5pt}}}
\put(0,112.5){\makebox(0,0)[c]{\rule{4pt}{0.5pt}}}
\put(0,150){\makebox(0,0)[c]{\rule{4pt}{0.5pt}}}
%% ---
\put(0,-5){\makebox(0,0)[t]{$a$}}
\put(75,-5){\makebox(0,0)[t]{$x$}}
\put(82.5,-2){\makebox(0,0)[tl]{$x+dx$}}
\end{picture}
|