1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
* triples.cc -- ePiX::P class
*
* This file is part of ePiX, a preprocessor for creating high-quality
* line figures in LaTeX
*
* Version 1.0.15
* Last Change: October 09, 2006
*/
/*
* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
* Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
* Department of Mathematics and Computer Science
* College of the Holy Cross
* Worcester, MA, 01610-2395, USA
*/
/*
* ePiX is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ePiX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ePiX; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "globals.h"
#include "errors.h"
#include "triples.h"
namespace ePiX {
P::P(double arg1, double arg2, double arg3)
: m_X1(arg1), m_X2(arg2), m_X3(arg3) { }
double P::x1(void) const
{
return m_X1;
}
double P::x2(void) const
{
return m_X2;
}
double P::x3(void) const
{
return m_X3;
}
// increment operators
P& P::operator += (const P& arg)
{
m_X1 += arg.m_X1;
m_X2 += arg.m_X2;
m_X3 += arg.m_X3;
return *this;
}
P& P::operator -= (const P& arg)
{
m_X1 -= arg.m_X1;
m_X2 -= arg.m_X2;
m_X3 -= arg.m_X3;
return *this;
}
// scalar multipication
P& P::operator *= (const double c)
{
m_X1 *= c;
m_X2 *= c;
m_X3 *= c;
return *this;
}
// cross product
P& P::operator *= (const P& v)
{
P temp(*this);
m_X1 = (temp.m_X2 * v.m_X3 - temp.m_X3 * v.m_X2);
m_X2 = (temp.m_X3 * v.m_X1 - temp.m_X1 * v.m_X3);
m_X3 = (temp.m_X1 * v.m_X2 - temp.m_X2 * v.m_X1);
return *this;
}
// componentwise product
P& P::operator &= (const P& v)
{
m_X1 *= v.m_X1;
m_X2 *= v.m_X2;
m_X3 *= v.m_X3;
return *this;
}
// orthogonalization: u %= v is the vector of the form u-k*v perp to v
P& P::operator%= (const P& v)
{
double denom(v.m_X1*v.m_X1 + v.m_X2*v.m_X2 + v.m_X3*v.m_X3);
if (denom < EPIX_EPSILON)
{
epix_warning("Orthogonalizing by zero vector, no action");
return *this;
}
// else c=(u|v)/(v|v)
double c((m_X1*v.m_X1 + m_X2*v.m_X2 + m_X3*v.m_X3)/denom);
m_X1 -= c*v.m_X1;
m_X2 -= c*v.m_X2;
m_X3 -= c*v.m_X3;
return *this;
}
// end of class functions
// vector space operations
P operator- (const P& u)
{
P temp(u);
return temp *= -1;
}
P operator+ (const P& u, const P& v)
{
P temp(u);
return temp += v;
}
P operator- (const P& u, const P& v)
{
P temp(u);
return temp -= v;
}
// scalar multiplication
P operator* (const double c, const P& v)
{
P temp(v);
return temp *= c;
}
P midpoint(const P& u, const P& v, const double t)
{
return u + t*(v-u);
}
// cross product
P operator* (const P& u, const P& v)
{
P temp(u);
return temp *= v;
}
P J(const P& arg)
{
// E_3 * arg
P temp(-arg);
return temp *= E_3;
}
// dot product
double operator | (const P& u, const P& v)
{
return u.x1()*v.x1() + u.x2()*v.x2() + u.x3()*v.x3();
}
double norm(const P& u)
{
return sqrt(u|u);
}
// componentwise product (a,b,c)&(x,y,z)=(ax,by,cz)
P operator& (const P& u, const P& v)
{
P temp(u);
return temp &= v;
}
P operator% (const P& u, const P& v)
{
P temp(u);
return temp %= v;
}
// (in)equality
bool operator == (const P& u, const P& v)
{
return (norm(u-v) < EPIX_EPSILON);
}
bool operator != (const P& u, const P& v)
{
return !(u==v);
}
} // end of namespace
|