File: clb_intmap.c

package info (click to toggle)
eprover 2.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 21,288 kB
  • sloc: ansic: 331,111; csh: 12,026; python: 10,178; awk: 5,825; makefile: 461; sh: 389
file content (677 lines) | stat: -rw-r--r-- 17,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*-----------------------------------------------------------------------

File  : clb_intmap.c

Author: Stephan Schulz (schulz@eprover.org)

Contents

  Functions implementing the multi-representation N_0->void* mapping
  data type.

  Copyright 2004 by the author.
  This code is released under the GNU General Public Licence and
  the GNU Lesser General Public License.
  See the file COPYING in the main E directory for details..
  Run "eprover -h" for contact information.

Changes

<1> Mon Dec 27 17:34:48 CET 2004
    New

-----------------------------------------------------------------------*/

#include "clb_intmap.h"



/*---------------------------------------------------------------------*/
/*                        Global Variables                             */
/*---------------------------------------------------------------------*/


/*---------------------------------------------------------------------*/
/*                      Forward Declarations                           */
/*---------------------------------------------------------------------*/


/*---------------------------------------------------------------------*/
/*                         Internal Functions                          */
/*---------------------------------------------------------------------*/


/*-----------------------------------------------------------------------
//
// Function: switch_to_array()
//
//   Return true if representation should switch to array (because of
//   high density)
//
// Global Variables: -
//
// Side Effects    : -
//
/----------------------------------------------------------------------*/

static bool switch_to_array(long old_min, long old_max, long new_key, long entries)
{
   long max_key = MAX(old_max, new_key);
   long min_key = MIN(old_min, new_key);

   if((entries * MIN_TREE_DENSITY) > (max_key-min_key))
   {
      return true;
   }
   return false;
}


/*-----------------------------------------------------------------------
//
// Function: switch_to_tree()
//
//   Return true if representation should switch to tree (because of
//   low density)
//
// Global Variables: -
//
// Side Effects    : -
//
/----------------------------------------------------------------------*/

static bool switch_to_tree(long old_min, long old_max, long new_key, long entries)
{
   long max_key = MAX(old_max, new_key);
   long min_key = MIN(old_min, new_key);

   if((entries * MAX_TREE_DENSITY) < (max_key-min_key))
   {
      return true;
   }
   return false;
}

/*-----------------------------------------------------------------------
//
// Function: add_new_tree_node()
//
//   Add a *new* key node to a IntMap in tree form and return its
//   address. Assertion fail, if key is not new. Increases element
//   count!
//
// Global Variables: -
//
// Side Effects    : Changes tree
//
/----------------------------------------------------------------------*/

static NumTree_p add_new_tree_node(IntMap_p map, long key, void* val)
{
   NumTree_p handle, check;
   assert(map->type == IMTree);

   handle = NumTreeCellAlloc();
   handle->key = key;
   handle->val1.p_val = val;
   check = NumTreeInsert(&(map->values.tree), handle);
   UNUSED(check); assert(!check);
   map->entry_no++;

   return handle;
}


/*-----------------------------------------------------------------------
//
// Function: array_to_tree()
//
//   Convert a IntMap in array form to an equivalent one in tree
//   form.
//
// Global Variables: -
//
// Side Effects    : Memory operations
//
/----------------------------------------------------------------------*/

static void array_to_tree(IntMap_p map)
{
   PDRangeArr_p  tmp_arr;
   IntOrP        tmp_val;
   long          i;
   long          max_key = map->min_key;
   long          min_key = map->max_key;

   assert(map->type == IMArray);

   tmp_arr = map->values.array;
   map->values.tree = NULL;
   map->type = IMTree;
   map->entry_no = 0;

   for(i=PDRangeArrLowKey(tmp_arr); i<=map->max_key; i++)
   {
      tmp_val.p_val = PDRangeArrElementP(tmp_arr, i);
      if(tmp_val.p_val)
      {
         NumTreeStore(&(map->values.tree), i, tmp_val, tmp_val);
         map->entry_no++;
         max_key = i;
         min_key = MIN(min_key, i);
      }
   }
   map->max_key = max_key;
   map->min_key = MIN(min_key, max_key);
   PDRangeArrFree(tmp_arr);
}


/*-----------------------------------------------------------------------
//
// Function: tree_to_array()
//
//   Convert a IntMap in tree form to an equivalent one in array
//   form.
//
// Global Variables: -
//
// Side Effects    : Memory operations
//
/----------------------------------------------------------------------*/

static void tree_to_array(IntMap_p map)
{
   PDRangeArr_p  tmp_arr;
   long          max_key = map->min_key;
   long          min_key = map->max_key;
   PStack_p      tree_iterator;
   NumTree_p     handle;

   assert(map->type == IMTree);

   map->entry_no = 0;
   tmp_arr = PDRangeArrAlloc(map->min_key, IM_ARRAY_SIZE);
   tree_iterator = NumTreeTraverseInit(map->values.tree);
   while((handle = NumTreeTraverseNext(tree_iterator)))
   {
      if(handle->val1.p_val)
      {
         PDRangeArrAssignP(tmp_arr, handle->key, handle->val1.p_val);
         map->entry_no++;
         max_key = handle->key;
         min_key = MIN(min_key, handle->key);
      }
   }
   NumTreeTraverseExit(tree_iterator);
   NumTreeFree(map->values.tree);
   map->max_key = max_key;
   map->min_key = MIN(min_key, max_key);
   map->values.array = tmp_arr;
   map->type = IMArray;
}



/*---------------------------------------------------------------------*/
/*                         Exported Functions                          */
/*---------------------------------------------------------------------*/

/*-----------------------------------------------------------------------
//
// Function: IntMapAlloc()
//
//   Allocate an empty int mapper.
//
// Global Variables: -
//
// Side Effects    : Memory operations
//
/----------------------------------------------------------------------*/

IntMap_p IntMapAlloc(void)
{
   IntMap_p handle = IntMapCellAlloc();

   handle->type = IMEmpty;

   return handle;
}


/*-----------------------------------------------------------------------
//
// Function: IntMapFree()
//
//   Free an int mapper (does _not_ free pointed-to elements).
//
// Global Variables: -
//
// Side Effects    : Memory operations
//
/----------------------------------------------------------------------*/

void IntMapFree(IntMap_p map)
{
   assert(map);

   switch(map->type)
   {
   case IMEmpty:
   case IMSingle:
         break;
   case IMArray:
         PDRangeArrFree(map->values.array);
         break;
   case IMTree:
         NumTreeFree(map->values.tree);
         break;
   default:
         assert(false && "Unknown IntMap type.");
   }
   IntMapCellFree(map);
}


/*-----------------------------------------------------------------------
//
// Function: IntMapGetVal()
//
//   Given a key, return the associated value or NULL, if no suitable
//   key/value pair exists.
//
// Global Variables:
//
// Side Effects    :
//
/----------------------------------------------------------------------*/

void* IntMapGetVal(IntMap_p map, long key)
{
   void* res = NULL;

   if(!map)
   {
      return NULL;
   }
   switch(map->type)
   {
   case IMEmpty:
         break;
   case IMSingle:
         if(map->max_key == key)
         {
            res = map->values.value;
         }
         break;
   case IMArray:
         if(key <= map->max_key)
         {
            res = PDRangeArrElementP(map->values.array, key);
         }
         break;
   case IMTree:
         if(key <= map->max_key)
         {
            NumTree_p entry = NumTreeFind(&(map->values.tree), key);
            if(entry)
            {
               res = entry->val1.p_val;
            }
         }
         break;
   default:
         assert(false && "Unknown IntMap type.");
   }
   return res;
}


/*-----------------------------------------------------------------------
//
// Function: IntMapGetRef()
//
//   Get a reference to the address of the value of a key/value
//   pair. Note that this always creates the key value pair (with
//   empty value) if it does not exist yet.
//
// Global Variables: -
//
// Side Effects    : May reorganize the map.
//
/----------------------------------------------------------------------*/


void** IntMapGetRef(IntMap_p map, long key)
{
   void      **res = NULL;
   void      *val;
   NumTree_p handle;
   IntOrP tmp;

   assert(map);

   /* printf("IntMapGetRef(%p,%ld) type %d, entries=%ld,
      maxkey=%ld...\n", map, key, map->type,map->entry_no,
      map->max_key);
   */
   switch(map->type)
   {
   case IMEmpty:
         map->type = IMSingle;
         map->max_key = key;
         map->min_key = key;
         map->values.value = NULL;
         res = &(map->values.value);
         map->entry_no = 1;
         break;
   case IMSingle:
         if(key == map->max_key)
         {
            res = &(map->values.value);
         }
         else if(switch_to_array(key, map->min_key, map->max_key, 2))
         {
            map->type = IMArray;
            val = map->values.value;
            map->values.array = PDRangeArrAlloc(MIN(key, map->max_key),
                                                IM_ARRAY_SIZE);
            PDRangeArrAssignP(map->values.array, map->max_key, val);
            PDRangeArrAssignP(map->values.array, key, NULL);
            res = &(PDRangeArrElementP(map->values.array, key));
            map->entry_no = 2;
         }
         else
         {
            map->type = IMTree;
            val = map->values.value;
            map->values.tree = NULL;
            tmp.p_val = val;
            NumTreeStore(&(map->values.tree),map->max_key, tmp, tmp);
            handle = add_new_tree_node(map, key, NULL);
            res = &(handle->val1.p_val);
            map->entry_no = 2;
         }
         map->min_key = MIN(map->min_key, key);
         map->max_key = MAX(key, map->max_key);
         break;
   case IMArray:
         if(((key > map->max_key)||(key<map->min_key)) &&
            switch_to_tree(map->min_key, map->max_key, key, map->entry_no+1))
         {
            array_to_tree(map);
            res = IntMapGetRef(map, key);
         }
         else
         {
            res = &(PDRangeArrElementP(map->values.array, key));
            if(!(*res))
            {
               map->entry_no++;
            }
         }
         map->min_key=MIN(map->min_key, key);
         map->max_key=MAX(map->max_key, key);
         break;
   case IMTree:
         handle = NumTreeFind(&(map->values.tree), key);
         if(handle)
         {
            res = &(handle->val1.p_val);
         }
         else
         {
            if(switch_to_array(map->min_key, map->max_key, key, map->entry_no+1))
            {
               tree_to_array(map);
               res = IntMapGetRef(map, key);
            }
            else
            {
               handle = add_new_tree_node(map, key, NULL);
               map->max_key=MAX(map->max_key, key);
               map->min_key=MIN(map->min_key, key);
               res = &(handle->val1.p_val);
            }
         }
         break;
   default:
         assert(false && "Unknown IntMap type.");
   }

   assert(res);
   return res;
}


/*-----------------------------------------------------------------------
//
// Function: IntMapAssign()
//
//   Add key/value pair to map, overriding any previous association.
//
// Global Variables: -
//
// Side Effects    : Changes map, may trigger reorganization
//
/----------------------------------------------------------------------*/

void IntMapAssign(IntMap_p map, long key, void* value)
{
   void** ref;

   assert(map);

   ref  = IntMapGetRef(map, key);
   *ref = value;
}


/*-----------------------------------------------------------------------
//
// Function: IntMapDelKey()
//
//   Delete a key/value association. If there was one, return the
//   value, otherwise return NULL.
//
//   **Currently, arrays never shrink. This might be worth
//   **changing (unlikely, though).
//
// Global Variables: -
//
// Side Effects    : May reorganize map
//
/----------------------------------------------------------------------*/

void* IntMapDelKey(IntMap_p map, long key)
{
   void* res = NULL;
   NumTree_p   handle;

   assert(map);

   switch(map->type)
   {
   case IMEmpty:
         res = NULL;
         break;
   case IMSingle:
         if(key == map->max_key)
         {
            res = map->values.value;
            map->type = IMEmpty;
            map->entry_no = 0;
         }
         break;
   case IMArray:
         if(key > map->max_key)
         {
            res = NULL;
         }
         /* if key == map->max_key optionally do something (shrink
          * array, recompute map->max_key - likely unnecessary at
          * least for my current applications */
         else if((res = PDRangeArrElementP(map->values.array, key)))
         {
            PDRangeArrAssignP(map->values.array, key, NULL);
            map->entry_no--;
            if(switch_to_tree(map->min_key, map->max_key, map->max_key, map->entry_no))
            {
               array_to_tree(map);
            }
         }
         break;
   case IMTree:
         handle = NumTreeExtractEntry(&(map->values.tree), key);
         if(handle)
         {
            map->entry_no--;
            res = handle->val1.p_val;
            if(handle->key == map->max_key)
            {
               if(map->values.tree)
               {
                  map->max_key = NumTreeMaxKey(map->values.tree);
               }
               else
               {
                  map->max_key = map->min_key;
               }
               if(switch_to_array(map->min_key, map->max_key, map->max_key, map->entry_no))
               {
                  tree_to_array(map);
               }
            }
            NumTreeCellFree(handle);
         }
         break;
   default:
         assert(false && "Unknown IntMap type.");
         break;
   }
   return res;
}

/*-----------------------------------------------------------------------
//
// Function: IntMapIterAlloc()
//
//   Allocate an iterator object iterating over key range lower_key to
//   upper_key (both inclusive) in map. This is only valid as long as
//   no new key is introduced or old key is deleted.
//
// Global Variables: -
//
// Side Effects    : Memory operations.
//
/----------------------------------------------------------------------*/

IntMapIter_p IntMapIterAlloc(IntMap_p map, long lower_key, long upper_key)
{
   IntMapIter_p handle = IntMapIterCellAlloc();

   handle->map = map;
   if(map)
   {
      handle->lower_key = MAX(lower_key, map->min_key);
      handle->upper_key = MIN(upper_key, map->max_key);

      switch(map->type)
      {
      case IMEmpty:
            break;
      case IMSingle:
            handle->admin_data.seen = true;
            if((map->max_key >= lower_key) && (map->max_key <= upper_key))
            {
               handle->admin_data.seen = false;
            }
            break;
      case IMArray:
            handle->admin_data.current = lower_key;
            break;
      case IMTree:
            handle->admin_data.tree_iter =
               NumTreeLimitedTraverseInit(map->values.tree, lower_key);
            break;
      default:
            assert(false && "Unknown IntMap type.");
            break;
      }
   }
   return handle;
}

/*-----------------------------------------------------------------------
//
// Function: IntMapIterFree()
//
//   Free an IntMapIterator.
//
// Global Variables: -
//
// Side Effects    : -
//
/----------------------------------------------------------------------*/

void IntMapIterFree(IntMapIter_p junk)
{
   assert(junk);

   if(junk->map)
   {
      switch(junk->map->type)
      {
      case IMEmpty:
      case IMSingle:
      case IMArray:
            break;
      case IMTree:
            PStackFree(junk->admin_data.tree_iter);
         break;
      default:
            assert(false && "Unknown IntMap type.");
            break;
      }
   }
   IntMapIterCellFree(junk);
}



/*-----------------------------------------------------------------------
//
// Function: IntMapDebugPrint()
//
//   Print an intmap datatype as a list of key:value pairs.
//
// Global Variables: -
//
// Side Effects    : Output, memory operations
//
/----------------------------------------------------------------------*/

void IntMapDebugPrint(FILE* out, IntMap_p map)
{
   IntMapIter_p iter = IntMapIterAlloc(map,0, LONG_MAX);
   void* val;
   long  key = 0;

   fprintf(out, "# ==== IntMapType %d Size = %ld\n", map->type, IntMapStorage(map));
   for(val=IntMapIterNext(iter, &key); val; val=IntMapIterNext(iter, &key))
   {
      fprintf(out, "# %5ld : %p\n", key, val);
   }
   fprintf(out, "# ==== IntMap End\n");

   IntMapIterFree(iter);
}




/*---------------------------------------------------------------------*/
/*                        End of File                                  */
/*---------------------------------------------------------------------*/