1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
%------------------------------------------------------------------------------
% File : MSC001-2 : TPTP v6.4.0. Released v3.2.0.
% Domain : Miscellaneous
% Axioms : Sets, numbers, lists, etc, that make up the Isabelle/HOL library
% Version : [Pau06] axioms.
% English : The files MSC001-[012].ax .ax are really about everything: sets,
% numbers, lists and all the other things that make up the basic
% Isabelle/HOL library. Also, many of the axioms in MSC001-0.ax
% describe the Isabelle/HOL type class hierarchy.
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : set.ax [Pau06]
% Status : Satisfiable
% Syntax : Number of clauses : 198 ( 11 non-Horn; 57 unit; 166 RR)
% Number of atoms : 371 ( 157 equality)
% Maximal clause size : 3 ( 2 average)
% Number of predicates : 10 ( 0 propositional; 1-3 arity)
% Number of functors : 60 ( 15 constant; 0-4 arity)
% Number of variables : 557 ( 144 singleton)
% Maximal term depth : 4 ( 1 average)
% SPC :
% Comments : Requires MSC001-0.ax
%------------------------------------------------------------------------------
cnf(cls_Datatype_Oelem__o2s__iff1_0,axiom,
( ~ c_in(V_x,c_Datatype_Oo2s(V_xo,T_a),T_a)
| V_xo = c_Datatype_Ooption_OSome(V_x,T_a) )).
cnf(cls_Datatype_Oelem__o2s__iff2_0,axiom,
( c_in(V_x,c_Datatype_Oo2s(c_Datatype_Ooption_OSome(V_x,T_a),T_a),T_a) )).
cnf(cls_Datatype_Onot__None__eq__iff1_0,axiom,
( V_x = c_Datatype_Ooption_ONone
| V_x = c_Datatype_Ooption_OSome(c_Main_Onot__None__eq__iff1__1(V_x,T_a),T_a) )).
cnf(cls_Datatype_Onot__Some__eq__iff1_0,axiom,
( V_x = c_Datatype_Ooption_ONone
| V_x = c_Datatype_Ooption_OSome(c_Main_Onot__Some__eq__iff1__1(V_x,T_a),T_a) )).
cnf(cls_Datatype_Ooption_Odistinct__1__iff1_0,axiom,
( c_Datatype_Ooption_ONone != c_Datatype_Ooption_OSome(V_a_H,T_a) )).
cnf(cls_Datatype_Ooption_Odistinct__2__iff1_0,axiom,
( c_Datatype_Ooption_OSome(V_a_H,T_a) != c_Datatype_Ooption_ONone )).
cnf(cls_Datatype_Ooption_Oinject__iff1_0,axiom,
( c_Datatype_Ooption_OSome(V_a,T_a) != c_Datatype_Ooption_OSome(V_a_H,T_a)
| V_a = V_a_H )).
cnf(cls_Datatype__Universe_OAtom__Atom__eq__iff1_0,axiom,
( c_Datatype__Universe_OAtom(V_a,T_a,T_b) != c_Datatype__Universe_OAtom(V_b,T_a,T_b)
| V_a = V_b )).
cnf(cls_Datatype__Universe_OAtom__not__Scons__iff1_0,axiom,
( c_Datatype__Universe_OAtom(V_a,T_a,T_b) != c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) )).
cnf(cls_Datatype__Universe_OIn0__eq__iff1_0,axiom,
( c_Datatype__Universe_OIn0(V_M,T_a,T_b) != c_Datatype__Universe_OIn0(V_N,T_a,T_b)
| V_M = V_N )).
cnf(cls_Datatype__Universe_OIn0__not__In1__iff1_0,axiom,
( c_Datatype__Universe_OIn0(V_M,T_a,T_b) != c_Datatype__Universe_OIn1(V_N,T_a,T_b) )).
cnf(cls_Datatype__Universe_OIn1__eq__iff1_0,axiom,
( c_Datatype__Universe_OIn1(V_M,T_a,T_b) != c_Datatype__Universe_OIn1(V_N,T_a,T_b)
| V_M = V_N )).
cnf(cls_Datatype__Universe_OIn1__not__In0__iff1_0,axiom,
( c_Datatype__Universe_OIn1(V_N,T_a,T_b) != c_Datatype__Universe_OIn0(V_M,T_a,T_b) )).
cnf(cls_Datatype__Universe_OLeaf__not__Numb__iff1_0,axiom,
( c_Datatype__Universe_OLeaf(V_a,T_a,T_b) != c_Datatype__Universe_ONumb(V_k,T_a,T_b) )).
cnf(cls_Datatype__Universe_OLeaf__not__Scons__iff1_0,axiom,
( c_Datatype__Universe_OLeaf(V_a,T_a,T_b) != c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) )).
cnf(cls_Datatype__Universe_ONumb__not__Leaf__iff1_0,axiom,
( c_Datatype__Universe_ONumb(V_k,T_a,T_b) != c_Datatype__Universe_OLeaf(V_a,T_a,T_b) )).
cnf(cls_Datatype__Universe_ONumb__not__Scons__iff1_0,axiom,
( c_Datatype__Universe_ONumb(V_k,T_a,T_b) != c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) )).
cnf(cls_Datatype__Universe_OScons__Scons__eq__iff1_0,axiom,
( c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) != c_Datatype__Universe_OScons(V_M_H,V_N_H,T_a,T_b)
| V_M = V_M_H )).
cnf(cls_Datatype__Universe_OScons__Scons__eq__iff1_1,axiom,
( c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) != c_Datatype__Universe_OScons(V_M_H,V_N_H,T_a,T_b)
| V_N = V_N_H )).
cnf(cls_Datatype__Universe_OScons__not__Atom__iff1_0,axiom,
( c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) != c_Datatype__Universe_OAtom(V_a,T_a,T_b) )).
cnf(cls_Datatype__Universe_OScons__not__Leaf__iff1_0,axiom,
( c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) != c_Datatype__Universe_OLeaf(V_a,T_a,T_b) )).
cnf(cls_Datatype__Universe_OScons__not__Numb__iff1_0,axiom,
( c_Datatype__Universe_OScons(V_M,V_N,T_a,T_b) != c_Datatype__Universe_ONumb(V_k,T_a,T_b) )).
cnf(cls_Divides_Odvd__0__left__iff__iff1_0,axiom,
( ~ c_Divides_Oop_Advd(c_0,V_m,tc_nat)
| V_m = c_0 )).
cnf(cls_Divides_Odvd__0__left__iff__iff2_0,axiom,
( c_Divides_Oop_Advd(c_0,c_0,tc_nat) )).
cnf(cls_Equiv__Relations_Oquotient__is__empty2__iff1_0,axiom,
( c_emptyset != c_Equiv__Relations_Oquotient(V_A,V_r,T_a)
| V_A = c_emptyset )).
cnf(cls_Equiv__Relations_Oquotient__is__empty2__iff2_0,axiom,
( c_emptyset = c_Equiv__Relations_Oquotient(c_emptyset,V_r,T_a) )).
cnf(cls_Equiv__Relations_Oquotient__is__empty__iff1_0,axiom,
( c_Equiv__Relations_Oquotient(V_A,V_r,T_a) != c_emptyset
| V_A = c_emptyset )).
cnf(cls_Equiv__Relations_Oquotient__is__empty__iff2_0,axiom,
( c_Equiv__Relations_Oquotient(c_emptyset,V_r,T_a) = c_emptyset )).
cnf(cls_Extraction_Osumbool_Odistinct__1__iff1_0,axiom,
( c_Extraction_Osumbool_OLeft != c_Extraction_Osumbool_ORight )).
cnf(cls_Extraction_Osumbool_Odistinct__2__iff1_0,axiom,
( c_Extraction_Osumbool_ORight != c_Extraction_Osumbool_OLeft )).
cnf(cls_Finite__Set_Ofinite__Diff__insert__iff1_0,axiom,
( ~ c_in(c_minus(V_A,c_insert(V_a,V_B,T_a),tc_set(T_a)),c_Finite__Set_OFinites,tc_set(T_a))
| c_in(c_minus(V_A,V_B,tc_set(T_a)),c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__Diff__insert__iff2_0,axiom,
( ~ c_in(c_minus(V_A,V_B,tc_set(T_a)),c_Finite__Set_OFinites,tc_set(T_a))
| c_in(c_minus(V_A,c_insert(V_a,V_B,T_a),tc_set(T_a)),c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__Pow__iff__iff1_0,axiom,
( ~ c_in(c_Pow(V_A,T_a),c_Finite__Set_OFinites,tc_set(tc_set(T_a)))
| c_in(V_A,c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__Pow__iff__iff2_0,axiom,
( ~ c_in(V_A,c_Finite__Set_OFinites,tc_set(T_a))
| c_in(c_Pow(V_A,T_a),c_Finite__Set_OFinites,tc_set(tc_set(T_a))) )).
cnf(cls_Finite__Set_Ofinite__Un__iff1_0,axiom,
( ~ c_in(c_union(V_F,V_G,T_a),c_Finite__Set_OFinites,tc_set(T_a))
| c_in(V_F,c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__Un__iff1_1,axiom,
( ~ c_in(c_union(V_F,V_G,T_a),c_Finite__Set_OFinites,tc_set(T_a))
| c_in(V_G,c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__Un__iff2_0,axiom,
( ~ c_in(V_G,c_Finite__Set_OFinites,tc_set(T_a))
| ~ c_in(V_F,c_Finite__Set_OFinites,tc_set(T_a))
| c_in(c_union(V_F,V_G,T_a),c_Finite__Set_OFinites,tc_set(T_a)) )).
cnf(cls_Finite__Set_Ofinite__converse__iff1_0,axiom,
( ~ c_in(c_Relation_Oconverse(V_r,T_b,T_a),c_Finite__Set_OFinites,tc_set(tc_prod(T_a,T_b)))
| c_in(V_r,c_Finite__Set_OFinites,tc_set(tc_prod(T_b,T_a))) )).
cnf(cls_Finite__Set_Ofinite__converse__iff2_0,axiom,
( ~ c_in(V_r,c_Finite__Set_OFinites,tc_set(tc_prod(T_b,T_a)))
| c_in(c_Relation_Oconverse(V_r,T_b,T_a),c_Finite__Set_OFinites,tc_set(tc_prod(T_a,T_b))) )).
cnf(cls_GCD_Ogcd__greatest__iff__iff1_0,axiom,
( ~ c_Divides_Oop_Advd(V_k,c_GCD_Ogcd(c_Pair(V_m,V_n,tc_nat,tc_nat)),tc_nat)
| c_Divides_Oop_Advd(V_k,V_m,tc_nat) )).
cnf(cls_GCD_Ogcd__greatest__iff__iff1_1,axiom,
( ~ c_Divides_Oop_Advd(V_k,c_GCD_Ogcd(c_Pair(V_m,V_n,tc_nat,tc_nat)),tc_nat)
| c_Divides_Oop_Advd(V_k,V_n,tc_nat) )).
cnf(cls_GCD_Ogcd__greatest__iff__iff2_0,axiom,
( ~ c_Divides_Oop_Advd(V_k,V_n,tc_nat)
| ~ c_Divides_Oop_Advd(V_k,V_m,tc_nat)
| c_Divides_Oop_Advd(V_k,c_GCD_Ogcd(c_Pair(V_m,V_n,tc_nat,tc_nat)),tc_nat) )).
cnf(cls_Infinite__Set_Onat__not__finite_0,axiom,
( ~ c_in(c_UNIV,c_Finite__Set_OFinites,tc_set(tc_nat)) )).
cnf(cls_IntDef_Oint__int__eq__iff1_0,axiom,
( c_IntDef_Oint(V_m) != c_IntDef_Oint(V_n)
| V_m = V_n )).
cnf(cls_IntDiv_Odvd__zminus__iff__iff1_0,axiom,
( ~ c_Divides_Oop_Advd(V_z,c_uminus(V_w,tc_IntDef_Oint),tc_IntDef_Oint)
| c_Divides_Oop_Advd(V_z,V_w,tc_IntDef_Oint) )).
cnf(cls_IntDiv_Odvd__zminus__iff__iff2_0,axiom,
( ~ c_Divides_Oop_Advd(V_z,V_w,tc_IntDef_Oint)
| c_Divides_Oop_Advd(V_z,c_uminus(V_w,tc_IntDef_Oint),tc_IntDef_Oint) )).
cnf(cls_IntDiv_Ozdvd__0__left__iff1_0,axiom,
( ~ c_Divides_Oop_Advd(c_0,V_m,tc_IntDef_Oint)
| V_m = c_0 )).
cnf(cls_IntDiv_Ozdvd__0__left__iff2_0,axiom,
( c_Divides_Oop_Advd(c_0,c_0,tc_IntDef_Oint) )).
cnf(cls_IntDiv_Ozminus__dvd__iff__iff1_0,axiom,
( ~ c_Divides_Oop_Advd(c_uminus(V_z,tc_IntDef_Oint),V_w,tc_IntDef_Oint)
| c_Divides_Oop_Advd(V_z,V_w,tc_IntDef_Oint) )).
cnf(cls_IntDiv_Ozminus__dvd__iff__iff2_0,axiom,
( ~ c_Divides_Oop_Advd(V_z,V_w,tc_IntDef_Oint)
| c_Divides_Oop_Advd(c_uminus(V_z,tc_IntDef_Oint),V_w,tc_IntDef_Oint) )).
cnf(cls_List_ONil2__notin__lex__iff1_0,axiom,
( ~ c_in(c_Pair(V_xs,c_List_Olist_ONil,tc_List_Olist(T_a),tc_List_Olist(T_a)),c_List_Olex(V_r,T_a),tc_prod(tc_List_Olist(T_a),tc_List_Olist(T_a))) )).
cnf(cls_List_ONil__is__append__conv__iff1_0,axiom,
( c_List_Olist_ONil != c_append(V_xs,V_ys,T_a)
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_ONil__is__append__conv__iff1_1,axiom,
( c_List_Olist_ONil != c_append(V_xs,V_ys,T_a)
| V_ys = c_List_Olist_ONil )).
cnf(cls_List_ONil__is__append__conv__iff2_0,axiom,
( c_List_Olist_ONil = c_append(c_List_Olist_ONil,c_List_Olist_ONil,T_a) )).
cnf(cls_List_ONil__is__rev__conv__iff1_0,axiom,
( c_List_Olist_ONil != c_List_Orev(V_xs,T_a)
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_ONil__is__rev__conv__iff2_0,axiom,
( c_List_Olist_ONil = c_List_Orev(c_List_Olist_ONil,T_a) )).
cnf(cls_List_ONil__notin__lex__iff1_0,axiom,
( ~ c_in(c_Pair(c_List_Olist_ONil,V_ys,tc_List_Olist(T_a),tc_List_Olist(T_a)),c_List_Olex(V_r,T_a),tc_prod(tc_List_Olist(T_a),tc_List_Olist(T_a))) )).
cnf(cls_List_Oappend1__eq__conv__iff1_0,axiom,
( c_append(V_xs,c_List_Olist_OCons(V_x,c_List_Olist_ONil,T_a),T_a) != c_append(V_ys,c_List_Olist_OCons(V_y,c_List_Olist_ONil,T_a),T_a)
| V_xs = V_ys )).
cnf(cls_List_Oappend1__eq__conv__iff1_1,axiom,
( c_append(V_xs,c_List_Olist_OCons(V_x,c_List_Olist_ONil,T_a),T_a) != c_append(V_ys,c_List_Olist_OCons(V_y,c_List_Olist_ONil,T_a),T_a)
| V_x = V_y )).
cnf(cls_List_Oappend__in__lists__conv__iff1_0,axiom,
( ~ c_in(c_append(V_xs,V_ys,T_a),c_List_Olists(V_A,T_a),tc_List_Olist(T_a))
| c_in(V_xs,c_List_Olists(V_A,T_a),tc_List_Olist(T_a)) )).
cnf(cls_List_Oappend__in__lists__conv__iff1_1,axiom,
( ~ c_in(c_append(V_xs,V_ys,T_a),c_List_Olists(V_A,T_a),tc_List_Olist(T_a))
| c_in(V_ys,c_List_Olists(V_A,T_a),tc_List_Olist(T_a)) )).
cnf(cls_List_Oappend__in__lists__conv__iff2_0,axiom,
( ~ c_in(V_ys,c_List_Olists(V_A,T_a),tc_List_Olist(T_a))
| ~ c_in(V_xs,c_List_Olists(V_A,T_a),tc_List_Olist(T_a))
| c_in(c_append(V_xs,V_ys,T_a),c_List_Olists(V_A,T_a),tc_List_Olist(T_a)) )).
cnf(cls_List_Oappend__is__Nil__conv__iff1_0,axiom,
( c_append(V_xs,V_ys,T_a) != c_List_Olist_ONil
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Oappend__is__Nil__conv__iff1_1,axiom,
( c_append(V_xs,V_ys,T_a) != c_List_Olist_ONil
| V_ys = c_List_Olist_ONil )).
cnf(cls_List_Oappend__is__Nil__conv__iff2_0,axiom,
( c_append(c_List_Olist_ONil,c_List_Olist_ONil,T_a) = c_List_Olist_ONil )).
cnf(cls_List_Oappend__same__eq__iff1_0,axiom,
( c_append(V_ys,V_xs,T_a) != c_append(V_zs,V_xs,T_a)
| V_ys = V_zs )).
cnf(cls_List_Oappend__self__conv2__iff1_0,axiom,
( c_append(V_xs,V_ys,T_a) != V_ys
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Oappend__self__conv2__iff2_0,axiom,
( c_append(c_List_Olist_ONil,V_ys,T_a) = V_ys )).
cnf(cls_List_Oappend__self__conv__iff1_0,axiom,
( c_append(V_xs,V_ys,T_a) != V_xs
| V_ys = c_List_Olist_ONil )).
cnf(cls_List_Oappend__self__conv__iff2_0,axiom,
( c_append(V_xs,c_List_Olist_ONil,T_a) = V_xs )).
cnf(cls_List_Ochar_Oinject__iff1_0,axiom,
( c_List_Ochar_OChar(V_nibble1,V_nibble2) != c_List_Ochar_OChar(V_nibble1_H,V_nibble2_H)
| V_nibble1 = V_nibble1_H )).
cnf(cls_List_Ochar_Oinject__iff1_1,axiom,
( c_List_Ochar_OChar(V_nibble1,V_nibble2) != c_List_Ochar_OChar(V_nibble1_H,V_nibble2_H)
| V_nibble2 = V_nibble2_H )).
cnf(cls_List_Olength__0__conv__iff1_0,axiom,
( c_Nat_Osize(V_xs,tc_List_Olist(T_a)) != c_0
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Olength__0__conv__iff2_0,axiom,
( c_Nat_Osize(c_List_Olist_ONil,tc_List_Olist(T_a)) = c_0 )).
cnf(cls_List_Olength__greater__0__conv__iff1_0,axiom,
( ~ c_less(c_0,c_Nat_Osize(c_List_Olist_ONil,tc_List_Olist(T_a)),tc_nat) )).
cnf(cls_List_Olength__greater__0__conv__iff2_0,axiom,
( c_less(c_0,c_Nat_Osize(V_xs,tc_List_Olist(T_a)),tc_nat)
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Olength__remdups__eq__iff1_0,axiom,
( c_Nat_Osize(c_List_Oremdups(V_xs,T_a),tc_List_Olist(T_a)) != c_Nat_Osize(V_xs,tc_List_Olist(T_a))
| c_List_Oremdups(V_xs,T_a) = V_xs )).
cnf(cls_List_Olength__remdups__eq__iff2_0,axiom,
( c_List_Oremdups(V_xs,T_a) != V_xs
| c_Nat_Osize(c_List_Oremdups(V_xs,T_a),tc_List_Olist(T_a)) = c_Nat_Osize(V_xs,tc_List_Olist(T_a)) )).
cnf(cls_List_Olist_Odistinct__1__iff1_0,axiom,
( c_List_Olist_ONil != c_List_Olist_OCons(V_a_H,V_list_H,T_a) )).
cnf(cls_List_Olist_Odistinct__2__iff1_0,axiom,
( c_List_Olist_OCons(V_a_H,V_list_H,T_a) != c_List_Olist_ONil )).
cnf(cls_List_Olist_Oinject__iff1_0,axiom,
( c_List_Olist_OCons(V_a,V_list,T_a) != c_List_Olist_OCons(V_a_H,V_list_H,T_a)
| V_a = V_a_H )).
cnf(cls_List_Olist_Oinject__iff1_1,axiom,
( c_List_Olist_OCons(V_a,V_list,T_a) != c_List_Olist_OCons(V_a_H,V_list_H,T_a)
| V_list = V_list_H )).
cnf(cls_List_Orev__eq__Cons__iff__iff1_0,axiom,
( c_List_Orev(V_xs,T_a) != c_List_Olist_OCons(V_y,V_ys,T_a)
| V_xs = c_append(c_List_Orev(V_ys,T_a),c_List_Olist_OCons(V_y,c_List_Olist_ONil,T_a),T_a) )).
cnf(cls_List_Orev__eq__Cons__iff__iff2_0,axiom,
( c_List_Orev(c_append(c_List_Orev(V_ys,T_a),c_List_Olist_OCons(V_y,c_List_Olist_ONil,T_a),T_a),T_a) = c_List_Olist_OCons(V_y,V_ys,T_a) )).
cnf(cls_List_Orev__is__Nil__conv__iff1_0,axiom,
( c_List_Orev(V_xs,T_a) != c_List_Olist_ONil
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Orev__is__Nil__conv__iff2_0,axiom,
( c_List_Orev(c_List_Olist_ONil,T_a) = c_List_Olist_ONil )).
cnf(cls_List_Orev__is__rev__conv__iff1_0,axiom,
( c_List_Orev(V_xs,T_a) != c_List_Orev(V_ys,T_a)
| V_xs = V_ys )).
cnf(cls_List_Osame__append__eq__iff1_0,axiom,
( c_append(V_xs,V_ys,T_a) != c_append(V_xs,V_zs,T_a)
| V_ys = V_zs )).
cnf(cls_List_Oself__append__conv2__iff1_0,axiom,
( V_ys != c_append(V_xs,V_ys,T_a)
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Oself__append__conv2__iff2_0,axiom,
( V_ys = c_append(c_List_Olist_ONil,V_ys,T_a) )).
cnf(cls_List_Oself__append__conv__iff1_0,axiom,
( V_xs != c_append(V_xs,V_ys,T_a)
| V_ys = c_List_Olist_ONil )).
cnf(cls_List_Oself__append__conv__iff2_0,axiom,
( V_xs = c_append(V_xs,c_List_Olist_ONil,T_a) )).
cnf(cls_List_Oset__empty2__iff1_0,axiom,
( c_emptyset != c_List_Oset(V_xs,T_a)
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Oset__empty2__iff2_0,axiom,
( c_emptyset = c_List_Oset(c_List_Olist_ONil,T_a) )).
cnf(cls_List_Oset__empty__iff1_0,axiom,
( c_List_Oset(V_xs,T_a) != c_emptyset
| V_xs = c_List_Olist_ONil )).
cnf(cls_List_Oset__empty__iff2_0,axiom,
( c_List_Oset(c_List_Olist_ONil,T_a) = c_emptyset )).
cnf(cls_Nat_OSuc__Suc__eq__iff1_0,axiom,
( c_Suc(V_m) != c_Suc(V_n)
| V_m = V_n )).
cnf(cls_Nat_OSuc__le__mono__iff1_0,axiom,
( ~ c_lessequals(c_Suc(V_n),c_Suc(V_m),tc_nat)
| c_lessequals(V_n,V_m,tc_nat) )).
cnf(cls_Nat_OSuc__le__mono__iff2_0,axiom,
( ~ c_lessequals(V_n,V_m,tc_nat)
| c_lessequals(c_Suc(V_n),c_Suc(V_m),tc_nat) )).
cnf(cls_Nat_OSuc__less__eq__iff1_0,axiom,
( ~ c_less(c_Suc(V_m),c_Suc(V_n),tc_nat)
| c_less(V_m,V_n,tc_nat) )).
cnf(cls_Nat_OSuc__less__eq__iff2_0,axiom,
( ~ c_less(V_m,V_n,tc_nat)
| c_less(c_Suc(V_m),c_Suc(V_n),tc_nat) )).
cnf(cls_Nat_OSuc__not__Zero__iff1_0,axiom,
( c_Suc(V_m) != c_0 )).
cnf(cls_Nat_OZero__not__Suc__iff1_0,axiom,
( c_0 != c_Suc(V_m) )).
cnf(cls_Nat_Oadd__gr__0__iff1_0,axiom,
( ~ c_less(c_0,c_plus(V_m,V_n,tc_nat),tc_nat)
| c_less(c_0,V_n,tc_nat)
| c_less(c_0,V_m,tc_nat) )).
cnf(cls_Nat_Oadd__gr__0__iff2_0,axiom,
( ~ c_less(c_0,V_m,tc_nat)
| c_less(c_0,c_plus(V_m,V_n,tc_nat),tc_nat) )).
cnf(cls_Nat_Oadd__gr__0__iff2_1,axiom,
( ~ c_less(c_0,V_n,tc_nat)
| c_less(c_0,c_plus(V_m,V_n,tc_nat),tc_nat) )).
cnf(cls_Nat_Oadd__is__0__iff1_0,axiom,
( c_plus(V_m,V_n,tc_nat) != c_0
| V_m = c_0 )).
cnf(cls_Nat_Oadd__is__0__iff1_1,axiom,
( c_plus(V_m,V_n,tc_nat) != c_0
| V_n = c_0 )).
cnf(cls_Nat_Oadd__is__0__iff2_0,axiom,
( c_plus(c_0,c_0,tc_nat) = c_0 )).
cnf(cls_Nat_Ole__0__eq__iff1_0,axiom,
( ~ c_lessequals(V_i,c_0,tc_nat)
| V_i = c_0 )).
cnf(cls_Nat_Ole__0__eq__iff2_0,axiom,
( c_lessequals(c_0,c_0,tc_nat) )).
cnf(cls_Nat_Oless__Suc0__iff1_0,axiom,
( ~ c_less(V_n,c_Suc(c_0),tc_nat)
| V_n = c_0 )).
cnf(cls_Nat_Oless__Suc0__iff2_0,axiom,
( c_less(c_0,c_Suc(c_0),tc_nat) )).
cnf(cls_Nat_Oless__one__iff1_0,axiom,
( ~ c_less(V_n,c_1,tc_nat)
| V_n = c_0 )).
cnf(cls_Nat_Oless__one__iff2_0,axiom,
( c_less(c_0,c_1,tc_nat) )).
cnf(cls_Nat_Oneq0__conv__iff1_0,axiom,
( c_less(c_0,V_n,tc_nat)
| V_n = c_0 )).
cnf(cls_Nat_Oneq0__conv__iff2_0,axiom,
( ~ c_less(c_0,c_0,tc_nat) )).
cnf(cls_Nat_Onot__add__less1__iff1_0,axiom,
( ~ c_less(c_plus(V_i,V_j,tc_nat),V_i,tc_nat) )).
cnf(cls_Nat_Onot__add__less2__iff1_0,axiom,
( ~ c_less(c_plus(V_j,V_i,tc_nat),V_i,tc_nat) )).
cnf(cls_Nat_Onot__less0__iff1_0,axiom,
( ~ c_less(V_n,c_0,tc_nat) )).
cnf(cls_Numeral_Obit_Odistinct__1__iff1_0,axiom,
( c_Numeral_Obit_OB0 != c_Numeral_Obit_OB1 )).
cnf(cls_Numeral_Obit_Odistinct__2__iff1_0,axiom,
( c_Numeral_Obit_OB1 != c_Numeral_Obit_OB0 )).
cnf(cls_Orderings_Oorder__less__irrefl__iff1_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_less(V_x,V_x,T_a) )).
cnf(cls_Product__Type_OPair__eq__iff1_0,axiom,
( c_Pair(V_a,V_b,T_a,T_b) != c_Pair(V_a_H,V_b_H,T_a,T_b)
| V_a = V_a_H )).
cnf(cls_Product__Type_OPair__eq__iff1_1,axiom,
( c_Pair(V_a,V_b,T_a,T_b) != c_Pair(V_a_H,V_b_H,T_a,T_b)
| V_b = V_b_H )).
cnf(cls_Relation_OIdI_0,axiom,
( c_in(c_Pair(V_a,V_a,T_a,T_a),c_Relation_OId,tc_prod(T_a,T_a)) )).
cnf(cls_Relation_OImage__singleton__iff__iff1_0,axiom,
( ~ c_in(V_b,c_Relation_OImage(V_r,c_insert(V_a,c_emptyset,T_b),T_b,T_a),T_a)
| c_in(c_Pair(V_a,V_b,T_b,T_a),V_r,tc_prod(T_b,T_a)) )).
cnf(cls_Relation_OImage__singleton__iff__iff2_0,axiom,
( ~ c_in(c_Pair(V_a,V_b,T_b,T_a),V_r,tc_prod(T_b,T_a))
| c_in(V_b,c_Relation_OImage(V_r,c_insert(V_a,c_emptyset,T_b),T_b,T_a),T_a) )).
cnf(cls_Relation_Oconverse__iff__iff1_0,axiom,
( ~ c_in(c_Pair(V_a,V_b,T_a,T_b),c_Relation_Oconverse(V_r,T_b,T_a),tc_prod(T_a,T_b))
| c_in(c_Pair(V_b,V_a,T_b,T_a),V_r,tc_prod(T_b,T_a)) )).
cnf(cls_Relation_Oconverse__iff__iff2_0,axiom,
( ~ c_in(c_Pair(V_b,V_a,T_b,T_a),V_r,tc_prod(T_b,T_a))
| c_in(c_Pair(V_a,V_b,T_a,T_b),c_Relation_Oconverse(V_r,T_b,T_a),tc_prod(T_a,T_b)) )).
cnf(cls_Relation_Opair__in__Id__conv__iff1_0,axiom,
( ~ c_in(c_Pair(V_a,V_b,T_a,T_a),c_Relation_OId,tc_prod(T_a,T_a))
| V_a = V_b )).
cnf(cls_SetInterval_OatLeast__eq__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| c_SetInterval_OatLeast(V_x,T_a) != c_SetInterval_OatLeast(V_y,T_a)
| V_x = V_y )).
cnf(cls_SetInterval_OatLeast__iff__iff1_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_in(V_i,c_SetInterval_OatLeast(V_k,T_a),T_a)
| c_lessequals(V_k,V_i,T_a) )).
cnf(cls_SetInterval_OatLeast__iff__iff2_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_lessequals(V_k,V_i,T_a)
| c_in(V_i,c_SetInterval_OatLeast(V_k,T_a),T_a) )).
cnf(cls_SetInterval_OatLeast__subset__iff__iff1_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_lessequals(c_SetInterval_OatLeast(V_x,T_a),c_SetInterval_OatLeast(V_y,T_a),tc_set(T_a))
| c_lessequals(V_y,V_x,T_a) )).
cnf(cls_SetInterval_OatLeast__subset__iff__iff2_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_lessequals(V_y,V_x,T_a)
| c_lessequals(c_SetInterval_OatLeast(V_x,T_a),c_SetInterval_OatLeast(V_y,T_a),tc_set(T_a)) )).
cnf(cls_SetInterval_OatMost__eq__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| c_SetInterval_OatMost(V_x,T_a) != c_SetInterval_OatMost(V_y,T_a)
| V_x = V_y )).
cnf(cls_SetInterval_OatMost__iff__iff1_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_in(V_i,c_SetInterval_OatMost(V_k,T_a),T_a)
| c_lessequals(V_i,V_k,T_a) )).
cnf(cls_SetInterval_OatMost__iff__iff2_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_lessequals(V_i,V_k,T_a)
| c_in(V_i,c_SetInterval_OatMost(V_k,T_a),T_a) )).
cnf(cls_SetInterval_OatMost__subset__iff__iff1_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_lessequals(c_SetInterval_OatMost(V_x,T_a),c_SetInterval_OatMost(V_y,T_a),tc_set(T_a))
| c_lessequals(V_x,V_y,T_a) )).
cnf(cls_SetInterval_OatMost__subset__iff__iff2_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_lessequals(V_x,V_y,T_a)
| c_lessequals(c_SetInterval_OatMost(V_x,T_a),c_SetInterval_OatMost(V_y,T_a),tc_set(T_a)) )).
cnf(cls_SetInterval_OgreaterThan__eq__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| c_SetInterval_OgreaterThan(V_x,T_a) != c_SetInterval_OgreaterThan(V_y,T_a)
| V_x = V_y )).
cnf(cls_SetInterval_OgreaterThan__iff__iff1_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_in(V_i,c_SetInterval_OgreaterThan(V_k,T_a),T_a)
| c_less(V_k,V_i,T_a) )).
cnf(cls_SetInterval_OgreaterThan__iff__iff2_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_less(V_k,V_i,T_a)
| c_in(V_i,c_SetInterval_OgreaterThan(V_k,T_a),T_a) )).
cnf(cls_SetInterval_OgreaterThan__subset__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| ~ c_lessequals(c_SetInterval_OgreaterThan(V_x,T_a),c_SetInterval_OgreaterThan(V_y,T_a),tc_set(T_a))
| c_lessequals(V_y,V_x,T_a) )).
cnf(cls_SetInterval_OgreaterThan__subset__iff__iff2_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| ~ c_lessequals(V_y,V_x,T_a)
| c_lessequals(c_SetInterval_OgreaterThan(V_x,T_a),c_SetInterval_OgreaterThan(V_y,T_a),tc_set(T_a)) )).
cnf(cls_SetInterval_OlessThan__eq__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| c_SetInterval_OlessThan(V_x,T_a) != c_SetInterval_OlessThan(V_y,T_a)
| V_x = V_y )).
cnf(cls_SetInterval_OlessThan__iff__iff1_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_in(V_i,c_SetInterval_OlessThan(V_k,T_a),T_a)
| c_less(V_i,V_k,T_a) )).
cnf(cls_SetInterval_OlessThan__iff__iff2_0,axiom,
( ~ class_Orderings_Oord(T_a)
| ~ c_less(V_i,V_k,T_a)
| c_in(V_i,c_SetInterval_OlessThan(V_k,T_a),T_a) )).
cnf(cls_SetInterval_OlessThan__subset__iff__iff1_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| ~ c_lessequals(c_SetInterval_OlessThan(V_x,T_a),c_SetInterval_OlessThan(V_y,T_a),tc_set(T_a))
| c_lessequals(V_x,V_y,T_a) )).
cnf(cls_SetInterval_OlessThan__subset__iff__iff2_0,axiom,
( ~ class_Orderings_Olinorder(T_a)
| ~ c_lessequals(V_x,V_y,T_a)
| c_lessequals(c_SetInterval_OlessThan(V_x,T_a),c_SetInterval_OlessThan(V_y,T_a),tc_set(T_a)) )).
cnf(cls_Set_OComplD__dest_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| ~ c_in(V_c,c_uminus(V_A,tc_set(T_a)),T_a) )).
cnf(cls_Set_OComplI_0,axiom,
( c_in(V_c,V_A,T_a)
| c_in(V_c,c_uminus(V_A,tc_set(T_a)),T_a) )).
cnf(cls_Set_OCompl__eq__Compl__iff__iff1_0,axiom,
( c_uminus(V_A,tc_set(T_a)) != c_uminus(V_B,tc_set(T_a))
| V_A = V_B )).
cnf(cls_Set_OCompl__subset__Compl__iff__iff1_0,axiom,
( ~ c_lessequals(c_uminus(V_A,tc_set(T_a)),c_uminus(V_B,tc_set(T_a)),tc_set(T_a))
| c_lessequals(V_B,V_A,tc_set(T_a)) )).
cnf(cls_Set_OCompl__subset__Compl__iff__iff2_0,axiom,
( ~ c_lessequals(V_B,V_A,tc_set(T_a))
| c_lessequals(c_uminus(V_A,tc_set(T_a)),c_uminus(V_B,tc_set(T_a)),tc_set(T_a)) )).
cnf(cls_Set_ODiffE_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| ~ c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a) )).
cnf(cls_Set_ODiffE_1,axiom,
( ~ c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a)
| c_in(V_c,V_A,T_a) )).
cnf(cls_Set_ODiffI_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| c_in(V_c,V_B,T_a)
| c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a) )).
cnf(cls_Set_OIntE_0,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_B,T_a) )).
cnf(cls_Set_OIntE_1,axiom,
( ~ c_in(V_c,c_inter(V_A,V_B,T_a),T_a)
| c_in(V_c,V_A,T_a) )).
cnf(cls_Set_OIntI_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_inter(V_A,V_B,T_a),T_a) )).
cnf(cls_Set_OInterD_0,axiom,
( ~ c_in(V_X,V_C,tc_set(T_a))
| ~ c_in(V_A,c_Inter(V_C,T_a),T_a)
| c_in(V_A,V_X,T_a) )).
cnf(cls_Set_OPow__iff__iff1_0,axiom,
( ~ c_in(V_A,c_Pow(V_B,T_a),tc_set(T_a))
| c_lessequals(V_A,V_B,tc_set(T_a)) )).
cnf(cls_Set_OPow__iff__iff2_0,axiom,
( ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_in(V_A,c_Pow(V_B,T_a),tc_set(T_a)) )).
cnf(cls_Set_OUNIV__not__empty__iff1_0,axiom,
( c_UNIV != c_emptyset )).
cnf(cls_Set_OUnCI_0,axiom,
( ~ c_in(V_c,V_B,T_a)
| c_in(V_c,c_union(V_A,V_B,T_a),T_a) )).
cnf(cls_Set_OUnCI_1,axiom,
( ~ c_in(V_c,V_A,T_a)
| c_in(V_c,c_union(V_A,V_B,T_a),T_a) )).
cnf(cls_Set_OUnE_0,axiom,
( ~ c_in(V_c,c_union(V_A,V_B,T_a),T_a)
| c_in(V_c,V_B,T_a)
| c_in(V_c,V_A,T_a) )).
cnf(cls_Set_OUn__empty__iff1_0,axiom,
( c_union(V_A,V_B,T_a) != c_emptyset
| V_A = c_emptyset )).
cnf(cls_Set_OUn__empty__iff1_1,axiom,
( c_union(V_A,V_B,T_a) != c_emptyset
| V_B = c_emptyset )).
cnf(cls_Set_OUn__empty__iff2_0,axiom,
( c_union(c_emptyset,c_emptyset,T_a) = c_emptyset )).
cnf(cls_Set_OUnionI_0,axiom,
( ~ c_in(V_A,V_X,T_a)
| ~ c_in(V_X,V_C,tc_set(T_a))
| c_in(V_A,c_Union(V_C,T_a),T_a) )).
cnf(cls_Set_OemptyE_0,axiom,
( ~ c_in(V_a,c_emptyset,T_a) )).
cnf(cls_Set_OinsertCI_0,axiom,
( ~ c_in(V_a,V_B,T_a)
| c_in(V_a,c_insert(V_b,V_B,T_a),T_a) )).
cnf(cls_Set_OinsertCI_1,axiom,
( c_in(V_x,c_insert(V_x,V_B,T_a),T_a) )).
cnf(cls_Set_OinsertE_0,axiom,
( ~ c_in(V_a,c_insert(V_b,V_A,T_a),T_a)
| c_in(V_a,V_A,T_a)
| V_a = V_b )).
cnf(cls_Set_Onot__psubset__empty__iff1_0,axiom,
( ~ c_less(V_A,c_emptyset,tc_set(T_a)) )).
cnf(cls_Set_Osingleton__insert__inj__eq_H__iff1_0,axiom,
( c_insert(V_a,V_A,T_a) != c_insert(V_b,c_emptyset,T_a)
| V_a = V_b )).
cnf(cls_Set_Osingleton__insert__inj__eq_H__iff1_1,axiom,
( c_insert(V_a,V_A,T_a) != c_insert(V_b,c_emptyset,T_a)
| c_lessequals(V_A,c_insert(V_b,c_emptyset,T_a),tc_set(T_a)) )).
cnf(cls_Set_Osingleton__insert__inj__eq_H__iff2_0,axiom,
( ~ c_lessequals(V_A,c_insert(V_x,c_emptyset,T_a),tc_set(T_a))
| c_insert(V_x,V_A,T_a) = c_insert(V_x,c_emptyset,T_a) )).
cnf(cls_Set_Osingleton__insert__inj__eq__iff1_0,axiom,
( c_insert(V_b,c_emptyset,T_a) != c_insert(V_a,V_A,T_a)
| V_a = V_b )).
cnf(cls_Set_Osingleton__insert__inj__eq__iff1_1,axiom,
( c_insert(V_b,c_emptyset,T_a) != c_insert(V_a,V_A,T_a)
| c_lessequals(V_A,c_insert(V_b,c_emptyset,T_a),tc_set(T_a)) )).
cnf(cls_Set_Osingleton__insert__inj__eq__iff2_0,axiom,
( ~ c_lessequals(V_A,c_insert(V_x,c_emptyset,T_a),tc_set(T_a))
| c_insert(V_x,c_emptyset,T_a) = c_insert(V_x,V_A,T_a) )).
cnf(cls_Sum__Type_OInl__eq__iff1_0,axiom,
( c_Sum__Type_OInl(V_x,T_a,T_b) != c_Sum__Type_OInl(V_y,T_a,T_b)
| V_x = V_y )).
cnf(cls_Sum__Type_OInl__not__Inr__iff1_0,axiom,
( c_Sum__Type_OInl(V_a,T_a,T_b) != c_Sum__Type_OInr(V_b,T_b,T_a) )).
cnf(cls_Sum__Type_OInr__eq__iff1_0,axiom,
( c_Sum__Type_OInr(V_x,T_b,T_a) != c_Sum__Type_OInr(V_y,T_b,T_a)
| V_x = V_y )).
cnf(cls_Sum__Type_OInr__not__Inl__iff1_0,axiom,
( c_Sum__Type_OInr(V_b,T_b,T_a) != c_Sum__Type_OInl(V_a,T_a,T_b) )).
cnf(cls_Wellfounded__Recursion_Oacyclic__converse__iff1_0,axiom,
( ~ c_Wellfounded__Recursion_Oacyclic(c_Relation_Oconverse(V_r,T_a,T_a),T_a)
| c_Wellfounded__Recursion_Oacyclic(V_r,T_a) )).
cnf(cls_Wellfounded__Recursion_Oacyclic__converse__iff2_0,axiom,
( ~ c_Wellfounded__Recursion_Oacyclic(V_r,T_a)
| c_Wellfounded__Recursion_Oacyclic(c_Relation_Oconverse(V_r,T_a,T_a),T_a) )).
cnf(cls_Wellfounded__Recursion_Oacyclic__insert__iff1_0,axiom,
( ~ c_Wellfounded__Recursion_Oacyclic(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| c_Wellfounded__Recursion_Oacyclic(V_r,T_a) )).
cnf(cls_Wellfounded__Recursion_Oacyclic__insert__iff1_1,axiom,
( ~ c_Wellfounded__Recursion_Oacyclic(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) )).
cnf(cls_Wellfounded__Recursion_Oacyclic__insert__iff2_0,axiom,
( ~ c_Wellfounded__Recursion_Oacyclic(V_r,T_a)
| c_Wellfounded__Recursion_Oacyclic(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) )).
cnf(cls_Wellfounded__Recursion_Owf__insert__iff1_0,axiom,
( ~ c_Wellfounded__Recursion_Owf(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| c_Wellfounded__Recursion_Owf(V_r,T_a) )).
cnf(cls_Wellfounded__Recursion_Owf__insert__iff1_1,axiom,
( ~ c_Wellfounded__Recursion_Owf(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) )).
cnf(cls_Wellfounded__Recursion_Owf__insert__iff2_0,axiom,
( ~ c_Wellfounded__Recursion_Owf(V_r,T_a)
| c_Wellfounded__Recursion_Owf(c_insert(c_Pair(V_y,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)),T_a)
| c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) )).
cnf(cls_Wellfounded__Relations_Oless__than__iff__iff1_0,axiom,
( ~ c_in(c_Pair(V_x,V_y,tc_nat,tc_nat),c_Wellfounded__Relations_Oless__than,tc_prod(tc_nat,tc_nat))
| c_less(V_x,V_y,tc_nat) )).
cnf(cls_Wellfounded__Relations_Oless__than__iff__iff2_0,axiom,
( ~ c_less(V_x,V_y,tc_nat)
| c_in(c_Pair(V_x,V_y,tc_nat,tc_nat),c_Wellfounded__Relations_Oless__than,tc_prod(tc_nat,tc_nat)) )).
%------------------------------------------------------------------------------
|