1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/*-----------------------------------------------------------------------
File : cle_numfeatures.c
Author: Stephan Schulz
Contents
Functions for dealing with numerical features of clause sets.
Copyright 1998, 1999 by the author.
This code is released under the GNU General Public Licence and
the GNU Lesser General Public License.
See the file COPYING in the main E directory for details..
Run "eprover -h" for contact information.
Changes
<1> Mon Jul 26 18:55:24 MET DST 1999
New
-----------------------------------------------------------------------*/
#include "cle_numfeatures.h"
/*---------------------------------------------------------------------*/
/* Global Variables */
/*---------------------------------------------------------------------*/
/*---------------------------------------------------------------------*/
/* Forward Declarations */
/*---------------------------------------------------------------------*/
/*---------------------------------------------------------------------*/
/* Internal Functions */
/*---------------------------------------------------------------------*/
/*-----------------------------------------------------------------------
//
// Function: relative_difference()
//
// Return the relative difference of two values.
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
static double relative_difference(double v1, double v2)
{
double abs1, abs2, res;
if((v1==0.0) && (v2==0.0))
{
return 0;
}
abs1 = ABS(v1);
abs2 = ABS(v2);
res = (v1-v2)/(2*MAX(abs1,abs2));
return res;
}
/*-----------------------------------------------------------------------
//
// Function: arity_distr_distance()
//
// Compute the normed euclidean distance beween two arity distribution
// vectors.
//
// Global Variables: -
//
// Side Effects : May theoretically extend the smaller distribution
// very unlikely, and completely harmless)
//
/----------------------------------------------------------------------*/
static double arity_distr_distance(PDArray_p d1, PDArray_p d2, int
maxarity)
{
int i, val1, val2;
double res = 0;
assert(maxarity >= -1);
if(maxarity == -1)
{
return 0.0;
}
for(i=0; i<=maxarity; i++)
{
val1 = PDArrayElementInt(d1, i);
val2 = PDArrayElementInt(d2, i);
res += relative_difference(val1,val2)*
relative_difference(val1,val2);
}
return sqrt(res)/(double)(maxarity+1);
}
/*-----------------------------------------------------------------------
//
// Function: parse_sig_distrib()
//
// Parse a list (n0, n1, ... nn) into a PDArray.
//
// Global Variables: -
//
// Side Effects : Reads input
//
/----------------------------------------------------------------------*/
static int parse_sig_distrib(Scanner_p in, PDArray_p distrib)
{
int i= -1, symbols;
AcceptInpTok(in, OpenBracket);
if(!TestInpTok(in, CloseBracket))
{
i++;
symbols = ParseInt(in);
PDArrayAssignInt(distrib, i, symbols);
while(!TestInpTok(in, CloseBracket))
{
i++;
AcceptInpTok(in, Comma);
symbols = ParseInt(in);
PDArrayAssignInt(distrib, i, symbols);
}
}
AcceptInpTok(in, CloseBracket);
return i;
}
/*---------------------------------------------------------------------*/
/* Exported Functions */
/*---------------------------------------------------------------------*/
/*-----------------------------------------------------------------------
//
// Function: FeaturesAlloc()
//
// Allocate an empty, initialized FeaturesCell()
//
// Global Variables: -
//
// Side Effects : Memory operations
//
/----------------------------------------------------------------------*/
Features_p FeaturesAlloc(void)
{
Features_p handle = FeaturesCellAlloc();
handle->pred_distrib = PDIntArrayAlloc(5,5);
handle->func_distrib = PDIntArrayAlloc(5,5);
return handle;
}
/*-----------------------------------------------------------------------
//
// Function: FeaturesFree()
//
// Free a FeaturesCell()
//
// Global Variables: -
//
// Side Effects : Memory operations
//
/----------------------------------------------------------------------*/
void FeaturesFree(Features_p junk)
{
PDArrayFree(junk->pred_distrib);
PDArrayFree(junk->func_distrib);
FeaturesCellFree(junk);
}
/*-----------------------------------------------------------------------
//
// Function: ComputeClauseSetNumFeatures()
//
// Compute the numerical features of a clause set. This is not as
// modular as I would have liked, as I expect this to be done fairly
// often and hence want to do it in a single pass.
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
void ComputeClauseSetNumFeatures(Features_p features, ClauseSet_p set,
Sig_p sig)
{
PStack_p pos_tdepth = PStackAlloc();
PStack_p neg_tdepth = PStackAlloc();
PStack_p pos_tsize = PStackAlloc();
PStack_p neg_tsize = PStackAlloc();
PStack_p pos_lits = PStackAlloc();
PStack_p neg_lits = PStackAlloc();
double average, deviation;
Clause_p clause;
Eqn_p eqn;
long *symbol_distrib;
long i;
symbol_distrib = SizeMalloc((sig->size)*sizeof(long));
for(i=0; i< sig->size; i++)
{
symbol_distrib[i] = 0;
}
ClauseSetAddSymbolDistribution(set, symbol_distrib);
features->pred_max_arity =
SigAddSymbolArities(sig, features->pred_distrib, true,
symbol_distrib);
features->func_max_arity =
SigAddSymbolArities(sig, features->func_distrib, false,
symbol_distrib);
SizeFree(symbol_distrib,(sig->size)*sizeof(long));
features->features[0] = 0;
features->features[1] = 0;
features->features[2] = 0;
for(clause = set->anchor->succ; clause != set->anchor; clause =
clause->succ)
{
if(ClauseIsUnit(clause))
{
features->features[0]++;
}
else if(ClauseIsHorn(clause))
{
features->features[1]++;
}
else
{
features->features[2]++;
}
PStackPushInt(pos_lits, clause->pos_lit_no);
PStackPushInt(neg_lits, clause->neg_lit_no);
for(eqn = clause->literals; eqn; eqn = eqn->next)
{
if(EqnIsPositive(eqn))
{
PStackPushInt(pos_tsize, TermWeight(eqn->lterm,
DEFAULT_VWEIGHT,
DEFAULT_FWEIGHT));
PStackPushInt(pos_tsize, TermWeight(eqn->rterm,
DEFAULT_VWEIGHT,
DEFAULT_FWEIGHT));
PStackPushInt(pos_tdepth, TermDepth(eqn->lterm));
PStackPushInt(pos_tdepth, TermDepth(eqn->rterm));
}
else
{
PStackPushInt(neg_tsize, TermWeight(eqn->lterm,
DEFAULT_VWEIGHT,
DEFAULT_FWEIGHT));
PStackPushInt(neg_tsize, TermWeight(eqn->rterm,
DEFAULT_VWEIGHT,
DEFAULT_FWEIGHT));
PStackPushInt(neg_tdepth, TermDepth(eqn->lterm));
PStackPushInt(neg_tdepth, TermDepth(eqn->rterm));
}
}
}
average = PStackComputeAverage(pos_tdepth, &deviation);
features->features[3] = average;
features->features[4] = deviation;
average = PStackComputeAverage(neg_tdepth, &deviation);
features->features[5] = average;
features->features[6] = deviation;
average = PStackComputeAverage(pos_tsize, &deviation);
features->features[7] = average;
features->features[8] = deviation;
average = PStackComputeAverage(neg_tsize, &deviation);
features->features[9] = average;
features->features[10] = deviation;
average = PStackComputeAverage(pos_lits, &deviation);
features->features[11] = average;
features->features[12] = deviation;
average = PStackComputeAverage(neg_lits, &deviation);
features->features[13] = average;
features->features[14] = deviation;
PStackFree(neg_lits);
PStackFree(pos_lits);
PStackFree(neg_tsize);
PStackFree(pos_tsize);
PStackFree(neg_tdepth);
PStackFree(pos_tdepth);
}
/*-----------------------------------------------------------------------
//
// Function: NumFeaturesPrint()
//
// Print the feature cell.
//
// Global Variables: -
//
// Side Effects : Output
//
/----------------------------------------------------------------------*/
void NumFeaturesPrint(FILE* out, Features_p features)
{
char *sep;
long i;
fputs("PA: (" , out);
sep = "";
for(i=0; i<=features->pred_max_arity; i++)
{
fprintf(out, "%s%ld", sep,
PDArrayElementInt(features->pred_distrib,i));
sep = ", ";
}
fputs(") FA: (", out);
sep = "";
for(i=0; i<=features->func_max_arity; i++)
{
fprintf(out, "%s%ld", sep,
PDArrayElementInt(features->func_distrib,i));
sep = ", ";
}
fprintf(out, ")\n(%f", features->features[0]);
for(i=1; i<FEATURE_NUMBER;i++)
{
fprintf(out, ", %f", features->features[i]);
}
fputs(")\n",out);
}
/*-----------------------------------------------------------------------
//
// Function: NumFeaturesParse()
//
// Parse a set of features.
//
// Global Variables: -
//
// Side Effects : Allocates memory, reads input
//
/----------------------------------------------------------------------*/
Features_p NumFeaturesParse(Scanner_p in)
{
Features_p handle = FeaturesAlloc();
long i;
AcceptInpId(in, "PA");
AcceptInpTok(in, Colon);
handle->pred_max_arity = parse_sig_distrib(in,
handle->pred_distrib);
AcceptInpId(in, "FA");
AcceptInpTok(in, Colon);
handle->func_max_arity = parse_sig_distrib(in,
handle->func_distrib);
AcceptInpTok(in, OpenBracket);
handle->features[0] = ParseFloat(in);
for(i=1; i< FEATURE_NUMBER; i++)
{
AcceptInpTok(in, Comma);
handle->features[i] = ParseFloat(in);
}
AcceptInpTok(in, CloseBracket);
return handle;
}
/*-----------------------------------------------------------------------
//
// Function: NumFeatureDistance()
//
// Return the weighted relative distance between the two feature
// vectors.
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
double NumFeatureDistance(Features_p f1, Features_p f2, double pred_w,
double func_w, double* weights)
{
double res, norm, dist, wsq;
int i;
dist = arity_distr_distance(f1->pred_distrib, f2->pred_distrib,
MAX(f1->pred_max_arity,
f2->pred_max_arity));
wsq = pred_w*pred_w;
res = dist*dist*wsq;
norm = wsq;
dist = arity_distr_distance(f1->func_distrib, f2->func_distrib,
MAX(f1->func_max_arity,
f2->func_max_arity));
wsq = func_w*func_w;
res += dist*dist*wsq;
norm += wsq;
for(i=0; i<FEATURE_NUMBER; i++)
{
dist = relative_difference(f1->features[i],f2->features[i]);
wsq = weights[i] * weights[i];
res += dist*dist*wsq;
norm += wsq;
}
res = res/norm;
return sqrt(res);
}
/*---------------------------------------------------------------------*/
/* End of File */
/*---------------------------------------------------------------------*/
|