File: LUSK6.lop

package info (click to toggle)
eprover 2.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 21,288 kB
  • sloc: ansic: 331,111; csh: 12,026; python: 10,178; awk: 5,825; makefile: 461; sh: 389
file content (24 lines) | stat: -rw-r--r-- 1,183 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#----------------------------------------------------------------
#   Problem:    In a ring, if x*x*x = x for all x
#               in the ring, then
#               x*y = y*x and 6*x = 0 for all x,y in the ring.
#
#               Funktionen:     f   : Multiplikation *
#                               J   : Addition +
#                               g   : Inverses
#                               e   : Neutrales Element
#                               a,b : Konstanten


j (e,X)       = X.                   # e ist a left identity for sum
j (X,e)       = X.                   # e ist a right identity for sum
j (g (X),X)   = e.                   # there exists a left inverse for sum
j (X,g (X))   = e.                   # there exists a right inverse for sum
j (j (X,Y),Z) = j (X,j (Y,Z)).       # associativity of addition
j (X,Y)       = j(Y,X).              # commutativity of addition
f (f (X,Y),Z) = f (X,f (Y,Z)).       # associativity of multiplication
f (X,j (Y,Z)) = j (f (X,Y),f (X,Z)). # distributivity axioms
f (j (X,Y),Z) = j (f (X,Z),f (Y,Z)). #
f (f(X,X),X)  = X.                   # special hypothese: x*x*x = x

?- f (a,b) = f (b,a).                   # theorem