1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
/*-----------------------------------------------------------------------
File : cte_match_mgu_1-1.c
Author: Stephan Schulz
Contents
Implementation of simple, non-indexed 1-1 match and unification
routines on shared terms (and unshared terms with shared
variables).
Copyright 1998, 1999 by the author.
This code is released under the GNU General Public Licence and
the GNU Lesser General Public License.
See the file COPYING in the main E directory for details..
Run "eprover -h" for contact information.
Changes
<1> Wed Mar 11 16:17:33 MET 1998
New
-----------------------------------------------------------------------*/
#include "cte_match_mgu_1-1.h"
#include "clb_plocalstacks.h"
/*---------------------------------------------------------------------*/
/* Global Variables */
/*---------------------------------------------------------------------*/
#ifdef MEASURE_UNIFICATION
long UnifAttempts = 0;
long UnifSuccesses = 0;
#endif
PERF_CTR_DEFINE(MguTimer);
#define MATCH_INIT -2
const UnificationResult UNIF_FAILED = {NoTerm, -1};
const UnificationResult UNIF_INIT = {NoTerm, -2};
#define FAIL_AND_BREAK(res, val) { (res) = (val); break; }
#define UPDATE_IF_INIT(res, new) ((res) = ((res) == MATCH_INIT) ? (new) : (res))
//#undef ENABLE_MATCHING_OPTIMIZATION
/*---------------------------------------------------------------------*/
/* Forward Declarations */
/*---------------------------------------------------------------------*/
/*---------------------------------------------------------------------*/
/* Internal Functions */
/*---------------------------------------------------------------------*/
/*-----------------------------------------------------------------------
//
// Function: reorientation_needed()
//
// Determines whether terms have to be reoriented in HO unification
// algorithm. Generalizes FO reorientation (rhs var, lhs non-var).
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
static __inline__ bool reorientation_needed(Term_p t1, Term_p t2)
{
if(TermIsTopLevelVar(t2))
{
return !TermIsTopLevelVar(t1) ||
TypeGetMaxArity(GetHeadType(NULL, t2)) <
TypeGetMaxArity(GetHeadType(NULL, t1)) ||
(TypeGetMaxArity(GetHeadType(NULL, t2)) ==
TypeGetMaxArity(GetHeadType(NULL, t1)) && t2->arity < t1->arity);
}
else
{
return false;
}
}
/*-----------------------------------------------------------------------
//
// Function: occur_check()
//
// Occur check for variables, possibly more efficient than the
// general TermIsSubterm()
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
static bool occur_check(restrict Term_p term, restrict Term_p var)
{
term = TermDerefAlways(term);
if(UNLIKELY(term == var))
{
return true;
}
for(int i=0; i < term->arity; i++)
{
if(occur_check(term->args[i], var))
{
return true;
}
}
return false;
}
/*---------------------------------------------------------------------*/
/* Exported Functions */
/*---------------------------------------------------------------------*/
/*-----------------------------------------------------------------------
//
// Function: PartiallyMatchVar()
//
// Given a variable var_matcher, determine the number of arguments
// of to_match that are actually matched. Performs occur check if
// needed.
//
// Global Variables: -
//
// Side Effects : -
//
/----------------------------------------------------------------------*/
int PartiallyMatchVar(Term_p var_matcher, Term_p to_match, Sig_p sig,
bool perform_occur_check)
{
assert(TermIsVar(var_matcher) && !var_matcher->binding);
assert(problemType == PROBLEM_HO || !TypeIsArrow(var_matcher->type));
int args_to_eat = MATCH_FAILED;
Type_p term_head_type = GetHeadType(sig, to_match);
Type_p matcher_type = var_matcher->type;
if(!term_head_type || TermIsLambda(to_match))
{
// ad-hoc polymorphic type -- at the moment we cannot
// determine these types :(
return MATCH_FAILED;
}
if(matcher_type == to_match->type)
{
args_to_eat = ARG_NUM(to_match);
}
else if(TypeIsArrow(term_head_type) && TypeIsArrow(matcher_type)
&& matcher_type->arity <= term_head_type->arity)
{
int start_idx = term_head_type->arity - matcher_type->arity;
for(int i=start_idx; i<term_head_type->arity; i++)
{
if(matcher_type->args[i-start_idx] != term_head_type->args[i])
{
return MATCH_FAILED;
}
}
args_to_eat = start_idx;
// if they have the same nr of args and args match -> they're the same
// -> nice place to check the type sharing invariant
assert(args_to_eat != 0 || matcher_type == term_head_type);
}
/* The case where we could eat up arguments, but they are not there. */
if(args_to_eat > ARG_NUM(to_match))
{
return MATCH_FAILED;
}
if(perform_occur_check)
{
for(int i=0; i<args_to_eat + TermIsAppliedVar(to_match) ? 1 : 0; i++)
{
if(occur_check(to_match->args[i], var_matcher))
{
return MATCH_FAILED;
}
}
}
// the number of arguments eaten
return args_to_eat;
}
/*-----------------------------------------------------------------------
//
// Function: SubstComputeMatch()
//
// Try to compute a match from matcher onto to_match and record it in
// subst. Return true if match exits (in this case subst is
// changed and needs to be backtracked by the caller), false
// otherwise (subst is unchanged). Both terms are assumed to contain
// no bindings except those stored in subst.
//
// The routine will work and compute a valid match if the two terms
// share variables. However, this will lead to temporary incorrect
// term structures (a variable may be bound to itself or a superterm
// containing it).
//
// Global Variables: -
//
// Side Effects : Instantiates terms
//
/----------------------------------------------------------------------*/
bool SubstComputeMatch(Term_p matcher, Term_p to_match, Subst_p subst)
{
assert(problemType == PROBLEM_FO);
long matcher_weight = TermStandardWeight(matcher);
long to_match_weight = TermStandardWeight(to_match);
assert(TermStandardWeight(matcher) == TermWeight(matcher, DEFAULT_VWEIGHT, DEFAULT_FWEIGHT));
assert(TermStandardWeight(to_match) == TermWeight(to_match, DEFAULT_VWEIGHT, DEFAULT_FWEIGHT));
if((matcher_weight > to_match_weight) || (TermCellQueryProp(to_match, TPPredPos) && TermIsVar(matcher)))
{
return false;
}
bool res = true;
PStackPointer backtrack = PStackGetSP(subst); /* For backtracking */
PLocalStackInit(jobs);
PLocalStackPush(jobs, matcher);
PLocalStackPush(jobs, to_match);
while(!PLocalStackEmpty(jobs))
{
to_match = PLocalStackPop(jobs);
matcher = PLocalStackPop(jobs);
if(TermIsVar(matcher))
{
assert(matcher->type);
assert(to_match->type);
if(matcher->type != to_match->type)
{
res = false;
break;
}
if(matcher->binding)
{
if(matcher->binding != to_match)
{
res = false;
break;
}
}
else
{
SubstAddBinding(subst, matcher, to_match);
}
matcher_weight += TermStandardWeight(to_match) - DEFAULT_VWEIGHT;
if(matcher_weight > to_match_weight)
{
res = false;
break;
}
}
else
{
if(matcher->f_code != to_match->f_code)
{
res = false;
break;
}
else
{
PLocalStackEnsureSpace(jobs, 2*matcher->arity);
for(int i=matcher->arity-1; i>=0; i--)
{
PLocalStackPush(jobs, matcher->args[i]);
PLocalStackPush(jobs, to_match->args[i]);
}
}
}
}
PLocalStackFree(jobs);
if(!res)
{
SubstBacktrackToPos(subst,backtrack);
}
return res;
}
/*-----------------------------------------------------------------------
//
// Function: SubstComputeMatchHO()
//
// Generalization of SubstComputeMatch(). Behaves exactly the same,
// except for the fact that it matches HO terms and can match prefix of
// to_match. For details, see
// SubstComputeMatch().
//
// Global Variables: -
//
// Side Effects : Instantiates terms
//
/----------------------------------------------------------------------*/
int SubstComputeMatchHO(Term_p matcher, Term_p to_match, Subst_p subst)
{
assert(problemType == PROBLEM_HO);
assert(TermGetBank(matcher) == TermGetBank(to_match));
long matcher_weight = TermStandardWeight(matcher);
long to_match_weight = TermStandardWeight(to_match);
TB_p bank = TermGetBank(matcher);
assert(TermStandardWeight(matcher) == TermWeight(matcher, DEFAULT_VWEIGHT, DEFAULT_FWEIGHT));
assert(TermStandardWeight(to_match) == TermWeight(to_match, DEFAULT_VWEIGHT, DEFAULT_FWEIGHT));
#ifndef NDEBUG
Term_p s = matcher;
Term_p t = to_match;
#endif
int res = MATCH_INIT;
if(matcher_weight > to_match_weight)
{
return MATCH_FAILED;
}
Sig_p sig = bank->sig;
PStackPointer backtrack = PStackGetSP(subst);
PLocalStackInit(jobs);
PLocalStackPush(jobs, matcher);
PLocalStackPush(jobs, to_match);
// Index from which to start slicing the target term
int start_idx;
while(!PLocalStackEmpty(jobs))
{
to_match = PLocalStackPop(jobs);
matcher = PLocalStackPop(jobs);
if(TermIsTopLevelVar(matcher))
{
Term_p var = TermIsAppliedVar(matcher) ? matcher->args[0] : matcher;
if(var->binding)
{
if(TermIsPrefix(var->binding, to_match))
{
start_idx = ARG_NUM(var->binding);
matcher_weight += TermStandardWeight(var->binding) - DEFAULT_VWEIGHT;
if(matcher_weight > to_match_weight)
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
assert(ARG_NUM(to_match) - start_idx - ARG_NUM(matcher) == 0 || res == MATCH_INIT);
UPDATE_IF_INIT(res, ARG_NUM(to_match) - start_idx - ARG_NUM(matcher));
}
else
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
}
else
{
int args_eaten = PartiallyMatchVar(var, to_match, sig, false);
if(args_eaten == MATCH_FAILED)
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
else
{
SubstBindAppVar(subst, var, to_match, args_eaten, bank);
start_idx = args_eaten;
matcher_weight += TermStandardWeight(var->binding) - DEFAULT_VWEIGHT;
if(matcher_weight > to_match_weight)
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
assert(args_eaten + ARG_NUM(matcher) == ARG_NUM(to_match) || res == MATCH_INIT);
UPDATE_IF_INIT(res, ARG_NUM(to_match) - args_eaten - ARG_NUM(matcher));
}
}
}
else
{
if(matcher->f_code != to_match->f_code
|| matcher->arity > to_match ->arity)
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
else
{
assert(ARG_NUM(matcher) == ARG_NUM(to_match) || res == MATCH_INIT);
start_idx = 0;
UPDATE_IF_INIT(res, ARG_NUM(to_match) - ARG_NUM(matcher));
}
}
const int offset = start_idx + (TermIsAppliedVar(to_match) ? 1 : 0)
- (TermIsAppliedVar(matcher) ? 1 : 0);
if(matcher->arity + offset > to_match->arity)
{
FAIL_AND_BREAK(res, MATCH_FAILED);
}
PLocalStackEnsureSpace(jobs, 2*(matcher->arity));
for(int i=TermIsAppliedVar(matcher) ? 1 : 0; i<matcher->arity; i++)
{
PLocalStackPush(jobs, matcher->args[i]);
PLocalStackPush(jobs, to_match->args[i+offset]);
}
}
if(res == MATCH_FAILED)
{
SubstBacktrackToPos(subst, backtrack);
}
PLocalStackFree(jobs);
assert(res != MATCH_INIT);
assert(res == MATCH_FAILED ||
TermStructPrefixEqual(s, t, DEREF_ONCE, DEREF_NEVER, res, bank->sig));
return res;
}
/*-----------------------------------------------------------------------
//
// Function: SubstComputeMgu()
//
// Compute an mgu between two terms. Currently without any special
// optimization (double entry checking in the to-solve stack has
// been deleted as ineficient). Returns true and modifies
// subst if sucessful, false otherwise (as for match, see
// above). Terms have to be variable disjoint, otherwise behaviour
// is unpredictable!
//
// Solution with stacks is more efficient than unsorted queues,
// sorted queues (variables last) are significantly better again!
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
bool SubstComputeMgu(Term_p t1, Term_p t2, Subst_p subst)
{
//printf("Unify %lu %lu\n", t1->entry_no, t2->entry_no);
assert(problemType == PROBLEM_FO);
#ifdef MEASURE_UNIFICATION
UnifAttempts++;
#endif
PERF_CTR_ENTRY(MguTimer);
if((TermCellQueryProp(t1, TPPredPos) && TermIsVar(t2))||
(TermCellQueryProp(t2, TPPredPos) && TermIsVar(t1)))
{
PERF_CTR_EXIT(MguTimer);
return false;
}
PStackPointer backtrack = PStackGetSP(subst); /* For backtracking */
bool res = true;
PQueue_p jobs = PQueueAlloc();
PQueueStoreP(jobs, t1);
PQueueStoreP(jobs, t2);
while(!PQueueEmpty(jobs))
{
t2 = TermDerefAlways(PQueueGetLastP(jobs));
t1 = TermDerefAlways(PQueueGetLastP(jobs));
if(TermIsVar(t2))
{
SWAP(t1, t2);
}
if(TermIsVar(t1))
{
if(t1 != t2)
{
assert(t1->type);
assert(t2->type);
/* Sort check and occur check - remember, variables are elementary and shared! */
if((t1->type != t2->type) || occur_check(t2, t1))
{
res = false;
break;
}
else
{
SubstAddBinding(subst, t1, t2);
}
}
}
else
{
if(t1->f_code != t2->f_code)
{
res = false;
break;
}
else
{
assert(t1->type);
assert(t2->type);
assert(t1->type == t2->type);
for(int i=t1->arity-1; i>=0; i--)
{
/* Delay variable bindings */
if(TermIsVar(t1->args[i]) || TermIsVar(t2->args[i]))
{
PQueueBuryP(jobs, t2->args[i]);
PQueueBuryP(jobs, t1->args[i]);
}
else
{
PQueueStoreP(jobs, t1->args[i]);
PQueueStoreP(jobs, t2->args[i]);
}
}
}
}
}
PQueueFree(jobs);
if(!res)
{
SubstBacktrackToPos(subst,backtrack);
}
else
{
#ifdef MEASURE_UNIFICATION
UnifSuccesses++;
#endif
}
PERF_CTR_EXIT(MguTimer);
return res;
}
/*-----------------------------------------------------------------------
//
// Function: SubstComputeMguHO()
//
// Generalization of SubstComputeMgu(). Behaves exactly the same,
// except for the fact that it unifies HO terms and can unify a prefix of
// either t1 or t2. The number of (possible) remaining arguments is stored
// in UnificationResult. For other details, see SubstComputeMgu().
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
UnificationResult SubstComputeMguHO(Term_p t1, Term_p t2, Subst_p subst)
{
#ifdef MEASURE_UNIFICATION
UnifAttempts++;
#endif
PERF_CTR_ENTRY(MguTimer);
assert(problemType == PROBLEM_HO);
assert(TermGetBank(t1) == TermGetBank(t2));
PStackPointer backtrack = PStackGetSP(subst); //For backtracking
PQueue_p jobs = PQueueAlloc();
UnificationResult res = UNIF_INIT;
bool swapped = reorientation_needed(t1, t2);
TB_p bank = TermGetBank(t1);
Sig_p sig = bank->sig;
PQueueStoreP(jobs, t1);
PQueueStoreP(jobs, t2);
#ifndef NDEBUG
Term_p debug_t1 = t1;
Term_p debug_t2 = t2;
#endif
while(!PQueueEmpty(jobs))
{
//fprintf(stderr, "|jobs|: %ld\n", PQueueCardinality(jobs));
t2 = TermDerefAlways(PQueueGetLastP(jobs));
t1 = TermDerefAlways(PQueueGetLastP(jobs));
int start_idx;
if(reorientation_needed(t1, t2))
{
SWAP(t1, t2);
}
if(TermIsTopLevelVar(t1))
{
Term_p var = TermIsAppliedVar(t1) ? t1->args[0] : t1;
int args_eaten = PartiallyMatchVar(var, t2, sig, true);
if(args_eaten == MATCH_FAILED)
{
FAIL_AND_BREAK(res, UNIF_FAILED);
}
SubstBindAppVar(subst, var, t2, args_eaten, bank);
if(var->binding == var)
{
var->binding = NULL;
start_idx = 0;
PStackPop(subst);
}
else
{
start_idx = ARG_NUM(var->binding);
assert(args_eaten == ARG_NUM(var->binding));
}
}
else
{
assert(!TermIsTopLevelVar(t1) && !TermIsTopLevelVar(t2));
if(t1->f_code != t2->f_code)
{
FAIL_AND_BREAK(res, UNIF_FAILED);
}
start_idx = 0;
}
Term_p min_term = t1;
Term_p max_term = t2;
int offset_min = 0;
int offset_max = start_idx;
if(ARG_NUM(t1) > ARG_NUM(t2) - start_idx)
{
assert(UnifIsInit(res));
// making sure that the argument with less arguments is on the left
// previously we made sure that the variable is on the left.
SWAP(min_term, max_term);
SWAP(offset_min, offset_max);
}
offset_min += (TermIsAppliedVar(min_term) ? 1 : 0);
offset_max += (TermIsAppliedVar(max_term) ? 1 : 0);
assert(min_term->arity - offset_min <= max_term->arity - offset_max && min_term->arity >= offset_min &&
max_term->arity >= offset_max);
if(UnifIsInit(res))
{
res = (UnificationResult){min_term == t1 ? (!swapped ? RightTerm : LeftTerm)
: (!swapped ? LeftTerm : RightTerm),
ABS(ARG_NUM(t1) - ARG_NUM(t2) + start_idx)};
}
for(int i=0; i<min_term->arity - offset_min; i++)
{
Term_p min_arg = min_term->args[i + offset_min];
Term_p max_arg = max_term->args[i + offset_max];
if(TermIsTopLevelVar(min_arg) || TermIsTopLevelVar(max_arg))
{
PQueueBuryP(jobs, max_arg);
PQueueBuryP(jobs, min_arg);
}
else
{
PQueueStoreP(jobs, min_arg);
PQueueStoreP(jobs, max_arg);
}
}
}
if(UnifFailed(res))
{
SubstBacktrackToPos(subst,backtrack);
}
else
{
#ifdef MEASURE_UNIFICATION
UnifSuccesses++;
#endif
assert(TermStructPrefixEqual(res.term_side == RightTerm ? debug_t1 : debug_t2,
res.term_side == RightTerm ? debug_t2 : debug_t1,
DEREF_ALWAYS, DEREF_ALWAYS, res.term_remaining,
sig));
}
PQueueFree(jobs);
PERF_CTR_EXIT(MguTimer);
return res;
}
// Definitions are needed only if we are working in LFHOL mode.
// Otherwise, macros expand to usual FO functions.
#ifdef ENABLE_LFHO
/*-----------------------------------------------------------------------
//
// Function: SubstMatchComplete()
//
// Determines whether pattern matches target so that no arguments remain
// in the target. If so, it adds bindings to subst and returns true.
// Otherwise, leaves subst unchanged and returns false.
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
__inline__ bool SubstMatchComplete(Term_p pattern, Term_p target, Subst_p subst)
{
bool res;
if(problemType == PROBLEM_FO)
{
res = SubstComputeMatch(pattern, target, subst);
}
else
{
PStackPointer backtrack = PStackGetSP(subst);
int res_i = SubstComputeMatchHO(pattern, target, subst);
if(res_i != 0)
{
SubstBacktrackToPos(subst, backtrack);
}
res = res_i == 0; // are no arguments of s remaining after the match?
}
return res;
}
/*-----------------------------------------------------------------------
//
// Function: SubstMguComplete()
//
// Determines whether t unifies with s so that no arguments remain
// in either t or s. If so, it adds bindings to subst and returns true.
// Otherwise, leaves subst unchanged and returns false.
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
__inline__ bool SubstMguComplete(Term_p t, Term_p s, Subst_p subst)
{
bool res;
if(problemType == PROBLEM_FO)
{
res = SubstComputeMgu(t, s, subst);
}
else
{
// no arguments of s remaining after the match
PStackPointer backtrack = PStackGetSP(subst);
UnificationResult u_res = SubstComputeMguHO(t, s, subst);
if(UnifFailed(u_res) || u_res.term_remaining != 0)
{
SubstBacktrackToPos(subst, backtrack);
}
res = !UnifFailed(u_res) && u_res.term_remaining == 0;
}
return res;
}
/*-----------------------------------------------------------------------
//
// Function: SubstMatchPossiblyPartial()
//
// Determines if pattern can match target so that n arguments are
// remaining in target (n <= ARG_NUM(target)). In that case, it adds
// bindings to subst and returns n. Otherwise returns MATCH_FAILED and
// leaves subst unchanged.
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
__inline__ int SubstMatchPossiblyPartial(Term_p pattern, Term_p target, Subst_p subst)
{
int res;
if(problemType == PROBLEM_FO)
{
res = SubstComputeMatch(pattern, target, subst) ? 0 : MATCH_FAILED;
}
else
{
res = SubstComputeMatchHO(pattern, target, subst);
}
// if matched -> number of remaining args is in good range
assert(res == MATCH_FAILED|| res <= ARG_NUM(target));
return res;
}
#endif
/*-----------------------------------------------------------------------
//
// Function: SubstMguPossiblyPartial()
//
// Determines if t can unify with s so that n arguments are
// remaining in either side (n <= ARG_NUM(t) || n <= ARG_NUM(s)).
// In that case, it adds bindings to subst and returns object encoding n
// and term in which arguments are remaining. Otherwise returns
// object encoding failure and leaves subst unchanged.
//
// Global Variables:
//
// Side Effects :
//
/----------------------------------------------------------------------*/
UnificationResult SubstMguPossiblyPartial(Term_p t, Term_p s, Subst_p subst)
{
UnificationResult res;
PStackPointer backtrack = PStackGetSP(subst);
if(problemType == PROBLEM_FO)
{
res = (UnificationResult) {SubstComputeMgu(t,s,subst) ? RightTerm : NoTerm, 0};
}
else
{
res = SubstComputeMguHO(t,s,subst);
if(res.term_remaining != 0)
{
res = UNIF_FAILED;
SubstBacktrackToPos(subst, backtrack);
}
}
return res;
}
/*---------------------------------------------------------------------*/
/* End of File */
/*---------------------------------------------------------------------*/
|