File: generate_auto.py

package info (click to toggle)
eprover 2.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 21,288 kB
  • sloc: ansic: 331,111; csh: 12,026; python: 10,178; awk: 5,825; makefile: 461; sh: 389
file content (382 lines) | stat: -rwxr-xr-x 9,846 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python2.7

import sys
import os
import re
import string
from e_option_parse import *


pick_by_global_performance = True
optimize_large_class_limit = 200


def print_dict_lines(dict):
    for i in dict.keys():
        print repr(i)+" : "+repr(dict[i])

def print_result():
    for i in result.keys():
        cl  = result[i]
        res = opt_res[i]
        print "/* %(i)-19s : %(cl)-45s %(res)-4d */" % vars()


def print_list_lines(l):
    for i in xrange(0, len(l)):
        print l[i]

def compute_problem_stem(key):
    mr = problem_ext.search(key)
    if not mr:
        raise RuntimeError, "Problem name has no extension (?!?) <" + key+">"
    res = key[0:mr.start()]
    return res;

# Parse a class file into the problems dictionary, return class size
#
# Arguments: File name
#            Internal name of the class
#            Dictionary where the problems are stored

def parse_class(c, key, probs):
    sys.stderr.write("Parsing " + c + " as " + key + "\n")
    i=0
    p=open(c,'r')
    l=p.readline()[:-1]
    while l:
        probs[compute_problem_stem(l)] = key
        l=p.readline()[:-1]
        i=i+1
    p.close
    return i

def tuple_add2(t1,t2):
    return (t1[0]+t2[0],t1[1]+t2[1])

def parse_prot(filename, stratname, matrix, succ_cases):
    sys.stderr.write("Parsing " + stratname + "\n")
    p=open(filename,'r')
    l=p.readline()[:-1]
    desc = "";
    while l:
        res = full_comment.match(l)
        if(res):
            desc = desc+l
        else:
            clean = re.sub(trail_space,'',l)
            tuple=re.split(white_space,clean)
            prob = compute_problem_stem(tuple[0]);
            if (problems.has_key(prob)) and (tuple[1] in succ_cases):
                cl=problems[prob]
                try:
                    time   = float(tuple[2])
                except ValueError:
                    time = 10000
                old = matrix[cl][stratname]
                matrix[cl][stratname]=tuple_add2(old,(1,time))
                old = stratperf[stratname];
                stratperf[stratname] = tuple_add2(old,(1,time))
        l=p.readline()
    p.close
    return desc

def eval_heuristic(classes,heuristic):
    res=(0.0,0.0)
    for i in classes:
        res=tuple_add2(res,matrix[i][heuristic])
    return res;

def tuple_is_better2(t1,t2):
    tmpres = t1[0]>t2[0] or (t1[0]==t2[0] and t1[1]<t2[1])
    return tmpres

def find_optimal_heuristic(classes, exclude, default=None):
    if default:
        res = default
        eval = eval_heuristic(classes, res)
    else:
        res  = ""
        eval = (-1.0,0.0)
    for i in stratset.keys():
        if not i in exclude:
            tmp = eval_heuristic(classes, i)
            if tuple_is_better2(tmp, eval):
                eval = tmp;
                res  = i
    return res

def find_covered(heuristic,classes):
    res = []
    for i in classes:
        if matrix[i][heuristic][0]==opt_res[i]:
            res.append(i)
    return res

def compare_strat_global(strat1, strat2):
    eval1 = stratperf[strat1]
    eval2 = stratperf[strat2]
    if eval1[0] > eval2[0]:
        return -1
    if eval1[0] < eval2[0]:
        return 1
    if eval1[1] > eval2[1]:
        return 1
    if eval1[1] < eval2[1]:
        return -1
    return 0


def translate_class(cl):
    solved = repr(matrix[cl][result[cl]][0])
    res = "      ( /* "+cl+" Solved: "+solved+ " of " +repr(classsize[cl]) + " */\n"
    pref = "       ";
    for i in xrange(6,len(cl)):
        # print "# YYY", cl
        if cl[i]!="-":
            # print "# ZZZ", i, cl[i]
            res = res+pref+"Spec"+class_int[i][cl[i]]+"(spec)"
            pref = "&&\n       "
    res = res+")"
    return res;

def translate_class_list(cl):
    res = "";
    pref = "";
    for i in cl:
        res = res+pref+translate_class(i)+"\n"
        pref = "       ||\n"
    return res[0:-1];




def print_raw():
    print "/* Raw association */"

    sum = 0;
    print "char* raw_class[] = \n{"
    for i in result.keys():
        res = opt_res[i]
        cl  = result[i]
        sum += res
        print "   \""+i[6:]+"\",  /* %6d %20s */"%(res,cl)
    print "   NULL\n};"

    print "char* raw_sine[] = \n{"
    for i in result.keys():
        cl  = result[i]
        arg = parse_sine(stratdesc[cl])
        if arg:
            print "   \""+arg+"\","
        else:
            print "   NULL,"
    print "   NULL\n};"
    print "/* Predicted solutions: %d */"%(sum,)


#------------------------------------------------------------------
# Begin main
#------------------------------------------------------------------

argc = len(sys.argv)

if argc <= 1:
    raise RuntimeError, "Usage: generate_auto.py <classes> <protocols>"

i=1

problems   = {} # Keys are problems, values are problem classes
classlist  = [] # List of all class names
classsize  = {} # Class name with associated size
stratset   = {} # Names of strategies with associated file names
stratdesc  = {} # Names of strategies with associated command line
stratperf  = {} # Global performance of strategy (strategy -> sol, time)
matrix     = {} # Keys: Class names. Objects: Dictionaries associating
                 # strategy with performance in this class
class_dir  = "";

succ_cases = ["T", "N"]
raw_class  = False
add_local_prots = False


for i in sys.argv[1:]:
    if i=="--proofs":
        succ_cases = ["T"]
    elif i=="--models":
        succ_cases = ["N"]
    elif i=="--raw":
        raw_class = True
    elif i=="--local":
        pick_by_global_performace = False
    elif i=="--lprots":
        add_local_prots = True
    elif i[0:2] == "--":
        raise RuntimeError, "Unknown option (probably typo)"

sys.argv = filter(lambda x:x[0]!="-", sys.argv) # Take out options

for i in sys.argv[1:]:
    res = match_class.search(i)
    if(res):
        key = i[res.start():res.end()]
        class_dir = i[0:res.start()]
        classlist.append(key)
        classsize[key] = parse_class(i, key, problems)
    else:
        key = re.split(slash,i)[-1]
        stratset[key] = i

if add_local_prots:
    for i in os.listdir("."):
        res = match_prot.search(i)
        if res:
            key = i
            stratset[key] = i

for i in classlist:
    matrix[i] = {}
    for j in stratset.keys():
        matrix[i][j] = (0,0.0)

for i in stratset.keys():
    stratperf[i]=(0,0)
    stratdesc[i]=parse_prot(stratset[i],i,matrix,succ_cases)


# Start determining the strategies

sys.stderr.write("Parsing done, running optimizer\n")

sum=0
opt_res = {};
for i in classlist:
    solved = 0
    for j in matrix[i].keys():
        solved = max(solved, matrix[i][j][0])
    opt_res[i] = solved
    sum = sum+solved

class_list_iter = list(classlist)
result = {}
used   = []
myused = {}

if pick_by_global_performance:
    ordered_strats = stratperf.keys()
    ordered_strats.sort(compare_strat_global)
    # print_dict_lines(stratperf)
    # print_list_lines(ordered_strats)

while class_list_iter:
    if pick_by_global_performance:
        h = ordered_strats.pop(0)
    else:
        h = find_optimal_heuristic(class_list_iter, used, None)

    covered =  find_covered(h, class_list_iter)
    for i in covered:
        result[i] = h
        class_list_iter.remove(i)
    used.append(h)
    myused[h] = 1


# Now we might want to do some post-optimization....or not!

if optimize_large_class_limit > 0:
    class_list_iter = list(classlist)

    while class_list_iter:
        cand = class_list_iter.pop()
        if classsize[cand] > optimize_large_class_limit:
            tmp = result[cand]
            h = find_optimal_heuristic([cand], [], tmp)
            result[cand] = h
            # print "Heuristic for "+cand+" changed from "+tmp+" to "+h
            if not h in myused:
                used.append(h)
                myused[h] = 1

# And now we print the results

by_heuristic={}

for i in result.keys():
    by_heuristic[result[i]]=[]

for i in result.keys():
    by_heuristic[result[i]].append(i)

print """
/* -------------------------------------------------------*/
/* The following code is generated automagically with     */
/* generate_auto.py. Yes, it is fairly ugly ;-)           */
/* -------------------------------------------------------*/
"""
print "/* Class dir used: "+class_dir+" */\n\n"
print_result()

if raw_class:
    print_raw()
else:

    print """
#ifdef CHE_PROOFCONTROL_INTERNAL

/* Strategies used:                                       */

"""

    for i in by_heuristic.keys():
        print heuristic_define(i, stratdesc)

    if used[0] in by_heuristic.keys():
        print "/* Global best, "+used[0]+", already defined */"
    else:
        print "/* Global best (used as a default): */"
        print heuristic_define(used[0],stratdesc)

    print """#endif

#if defined(CHE_HEURISTICS_INTERNAL) || defined(TO_ORDERING_INTERNAL)
"""

    for i in by_heuristic.keys():
        print "   else if("
        print translate_class_list(by_heuristic[i])+")"
        print '''   {
#ifdef CHE_HEURISTICS_INTERNAL
      res = "''' + trans_heuristic_name(i) +'";'

        print parse_control_info(stratdesc[i])

        print '''#endif
#ifdef TO_ORDERING_INTERNAL'''

        print parse_ordering_info(stratdesc[i])
        print "#endif\n   }"



    print "   else /* Default */"
    print '''   {
#ifdef CHE_HEURISTICS_INTERNAL
  res = "''' + trans_heuristic_name(used[0]) +'";'

    print parse_control_info(stratdesc[used[0]])

    print '''#endif
#ifdef TO_ORDERING_INTERNAL'''
    print parse_ordering_info(stratdesc[used[0]])
    print "#endif\n   }"


    print "#endif"

    print "\n/* Total solutions on test set:", sum, "*/"
    print """/* -------------------------------------------------------*/
/*     End of automatically generated code.               */
/* -------------------------------------------------------*/
"""