1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#!/usr/bin/env python2.7
# ----------------------------------
#
# Module pylib_basics
#
# Trivial stuff not easily classified elsewhere. Some of this stuff
# should probably be in the base language or libraries, but I cannot
# find it.
#
# Copyright 2003 Stephan Schulz, schulz@eprover.org
#
# This code is part of the support structure for the equational
# theorem prover E. Visit
#
# http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html
#
# for more information.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program ; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
#
# The original copyright holder can be contacted as
#
# Stephan Schulz (I4)
# Technische Universitaet Muenchen
# Institut fuer Informatik
# Boltzmannstrasse 3
# Garching bei Muenchen
# Germany
#
# or via email (address above).
import math
# Types for which sign is well-defined
NumericScalarTypes = [type(1), type(1L), type(1.0)]
# Logarithm of 2 in base e
LogE2 = math.log(2)
# Names for floating point infinity
def compute_infinity():
"""
Find a value that does not grow by squaring it (i.e. inf).
"""
base = 2.0
cand = base*base
for i in xrange(1,1000):
if cand == base:
return cand
base = cand
cand = base*base
raise ValueError, "Cannot find positive infinity after 1000 iterations"
Infinity = compute_infinity()
# Global variables:
class Globals:
pass
globals = Globals()
globals.verbose = False
def verbose():
return globals.verbose
def sign(number):
"""
Return the sign of a number.
"""
if type(number) in NumericScalarTypes:
if number > 0:
return 1
elif number < 0:
return -1
else:
return 0
raise TypeError
def log2(n):
"""
Return the logarithm dualis of the number given.
"""
return math.log(n)/LogE2
def is_sorted(l, cmpfun = cmp):
"""
Return True if l is a sorted list.
"""
if len(l) <= 1:
return True
old = l[0]
for i in l[1:]:
if cmpfun(old,i) > 0:
return False
old = i
return True
def uniq(l):
"""
Create a new list by replacing sublists containing the same element
in l with a single copy of the element. Not very efficient, but
quite Pythonic. I think. This, as UNIX uniq, requires a sorted list.
"""
nl = list(l)
i = 0
while 1:
try:
if nl[i+1] == nl[i]:
del(nl[i])
else:
i=i+1
except IndexError:
break
return nl
def uniq_unsorted(l):
"""
Return a list of different elements in order of first occurrence.
"""
set = {}
return [set.setdefault(e,e) for e in l if e not in set]
def element_seq_count(l):
"""
As uniq, but return a list of the length of the subsequences with
the same element.
"""
if len(l) == 0:
return []
nl = []
init = l[0]
count = 1
for i in l[1:]:
if i==init:
count +=1
else:
nl.append(count)
count = 1
init = i
nl.append(count)
return nl
def mean(l):
"""
Return the mean of a list (of numbers, hopefully).
"""
if l:
return float(sum(l))/len(l)
raise ValueError, "Cannot get the mean of an empty list!"
def variance(l):
"""
Compute the variance of a list of numbers.
"""
m = mean(l)
sqdiffs = [(i-m)**2 for i in l]
res = sum(sqdiffs)/(len(l)-1)
return res
def standard_deviation(l):
"""
Return the standard deviation of a list of numbers.
"""
return math.sqrt(variance(l))
def rl_lex_compare(t1, t2):
"""
Compare two tuples of the same length lexicograhically left to right.
"""
assert len(t1)==len(t2)
for i in range(len(t1)-1,-1,-1):
tmp = cmp(t1[i], t2[i])
if tmp:
return tmp
return 0
class name_number_hash:
"""
Datatype for maintaining an efficient bijection associating a set
of n abitrary names into the numbers 0..n.
"""
def __init__(self):
self.name_index = {}
self.number_index = []
self.count = 0
def insert(self, name):
try:
res = self.get_code(name)
except KeyError:
self.name_index[name] = self.count
self.number_index.append(name)
res = self.count
self.count += 1
return res
def get_name(self, index):
return self.number_index[index]
def get_code(self, name):
return self.name_index[name]
def get_entry_no(self):
return self.count
|