File: pylib_eprots.py

package info (click to toggle)
eprover 2.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 21,288 kB
  • sloc: ansic: 331,111; csh: 12,026; python: 10,178; awk: 5,825; makefile: 461; sh: 389
file content (431 lines) | stat: -rwxr-xr-x 12,633 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python2.7
# ----------------------------------
#
# Module pylib_eprots
#
# Functions (and classes) for manipulating E result protocols (this is
# probably fairly specialized and not that useful for others...
#
# Copyright 2003-2005 Stephan Schulz, schulz@eprover.org
#
# This code is part of the support structure for the equational
# theorem prover E. Visit
#
#  http://www.eprover.org
#
# for more information.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program ; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307 USA 
#
# The original copyright holder can be contacted as
#
# Stephan Schulz (I4)
# Technische Universitaet Muenchen
# Institut fuer Informatik
# Boltzmannstrasse 3
# Garching bei Muenchen
# Germany
#
# or via email (address above).

import re
import string
import sys
from UserList import UserList

import pylib_basics
import pylib_io
import pylib_discretize


InfiniteTime = 1000000000
EmptyProtSetException = "Cannot get required information from empty protocol set"
train_number_re = re.compile("_[0-9]*\.")


def break_prot_line(line):
    """
    Take an E protocoll line and convert it into an array of values of
    the appropriate type (string, float or int) that is returned.
    """
    if line[0] == "#":
        return None
    parts = string.split(line, None)
    for i in range(0, len(parts)):
        try:
            p = int(parts [i])
        except ValueError:
            try:
                p = float(parts[i])
            except ValueError:
                p = parts[i]
        parts[i] = p
    return parts            


def get_relevant_parts(line):
    """
    Accept an E protocol line and return a tuple of the three relevant
    elements: Problem name, status, and time.
    """
    parts = break_prot_line(line)
    if parts:
        return (parts[0],parts[1],parts[2], parts[3])
    return None

class process_line:
    """
    Class of functional objects converting one E protocol line into
    another by rounding the time as specified by a rounding function.
    """
    def __init__(self, round_fun):
        self.round_fun = round_fun;

    def __call__(self,line):
        print line
        if line[0] == "#":
           return line
        parts = string.split(line, None, 4)
        return "%-29s %s %8.3f %-10s %85s" % (parts[0], parts[1],
                                            self.round_fun(float(parts[2])),
                                            parts[3],parts[4])


def compare_entries(entry1, entry2):
    """
    Compare two tuples of the form (status, time, reason) so that
    failures are smaller than successes and better times are smaller
    than larger ones.
    """
    res = cmp(entry1[0], entry2[0])
    if res!=0:
        return -1*res;
    res = cmp(entry1[1], entry2[1])
    if res!=0:
        return res;
    return cmp(entry1[2], entry2[2])
    

class eprotocol:
    """
    Data type for storing (the relevant parts of) a standard E test
    protocol.
    """
    def __init__(self, name=None, silent=False):
        self.name      = "Unknown"
        self.data      = {}
        self.proofs    = 0
        self.models    = 0
        self.successes = 0
        self.succ_time = 0.0
        self.entries   = 0
        self.comments  = ""
        self.silent    = silent
        if name:
            self.parse(name)

    def __cmp__(self, other):
        """
        Comparison of two protocols. Smaller is better, i.e. more
        successes or same number of successes in less time.
        """
        tmp = other.successes - self.successes
        if tmp!=0:
            return tmp
        tmp = self.succ_time- other.succ_time
        return pylib_basics.sign(tmp)

    def insert_entry(self, entry, state, time, reason):
        self.data[entry] = (state, time, reason)
        self.entries += 1
        if state == "T":
            self.proofs    += 1
            self.successes += 1
            self.succ_time += time
        elif state == "N":
            self.models    += 1
            self.successes += 1
            self.succ_time += time

    def insert_line(self, line):
        tmp = get_relevant_parts(line)
        if tmp:
            self.insert_entry(tmp[0], tmp[1], tmp[2], tmp[3]);
        else:
            self.comments += line

    def parse(self, file):
        if not self.silent:        
            sys.stderr.write("Parsing "+file+".\n")
        f = pylib_io.flexopen(file,'r')
        l = f.readlines()
        pylib_io.flexclose(f)
        self.name = file
        for line in l:
            self.insert_line(line)


    def filter(self, filter_re):
        """
        Return a new protocol with the same name containing just
        problems where the name matches the filtering regexp.
        """
        res = eprotocol(None, self.silent);
        iter_list = self.data.keys()
        iter_list.sort()
        for i in iter_list:
            if filter_re.search(i):
                l_entry = self.data[i]
                res.insert_entry(i, l_entry[0], l_entry[1], l_entry[2]);
        return res


    def collect_sample(self):
        """
        Consider names to consist of a class part and a running number
        of the form '_XXX' directly before the suffix. Return a
        dictionary associating every class with a list of all
        results.
        """
        res = {}

        for i in self.data.keys():
            entry = self.data[i]
            mo = train_number_re.search(i);
            key = i[:mo.start()];
            try:
                res[key].append(entry)
            except KeyError:
                res[key] = [];
                res[key].append(entry)
        for i in res.keys():
            res[i].sort(compare_entries);
        return res

    def collect_medians(self):
        """
        For each class, compute the median value. Return  a sorted
        list of class/value tuples. If the median is no sucess,
        generate no pair!
        """
        tmp = self.collect_sample()
        res = [];
        for i in tmp.keys():
            entry = tmp[i];
            value = entry[int((len(entry)-1)/2)];
            if value[0]!='F':
                res.append( (i, value[1]));
        res.sort();
        return res;

    def collect_times(self, success_only=False):
        """
        Return a list of the run times for all problems (or all
        successfully solved problems) in the protocol.
        """
        if success_only:
            return [i[1] for i in self.data.values()  if i[0]!='F']
        else:
            return [i[1] for i in self.data.values()]

    
    def repr_entry(self, key):
        """
        Return a representation of the entry for a single key.
        """
        tmp = self.data[key];
        return "%-38s %s %8.3f  %s" % (key, tmp[0], tmp[1], tmp[2])

    def __repr__(self):
        res = self.comments;
        res +="""# Proofs:    %5d
# Models:    %5d
# Successed: %5d
# Time:      %-8.3f
""" % (self.proofs, self.models, self.successes, self.succ_time)
        tmpkeys = self.data.keys()
        tmpkeys.sort()
        for i in tmpkeys:
            res += self.repr_entry(i)
            res += "\n"
        return res;
        
    def eval_problem(self, problem, round_fun=pylib_discretize.no_round):
        """
        Return a tuple (time, solutions, succ_time), where time is the
        time for a successful proof attempt at problem (or
        InfiniteTime for failure), solutions is the number of
        solutions in the protocol, and succ_time is the sum of all
        solution times in the protocol. Unknown problems are treated
        as failures.
        """
        try:
            state, time = self.data[problem];
            if state == "F":
                return (InfiniteTime, self.successes, self.succ_time)
            else:
                return (round_fun(time), self.successes, self.succ_time)
        except KeyError:
            return (InfiniteTime, self.successes, self.succ_time)

    def get_status(self, problem):
        (state, time) = self.data[problem]
        return state

def eval_is_better(e1, e2):
    """
    Return true if e1 is better than e2
    """
    if e1[0] < e2[0]:
        return True
    elif e1[0] == e2[0]:
        if e1[1] > e2[1]:
            return True
        elif e1[1] == e2[1]:
            if e1[2] > e2[2]:
                return True
    return False



class classification(UserList):
    def __init__(self, data=[]):
        UserList.__init__(self)
        for i in data:
            self.append(i)
        self.hash = {}
        
    def append(self, new):
        if len(new)!=3:
            raise TypeError
        UserList.append(self,new)
        self.hash[new[0]] = new[2]

    def printout(self, prefix = ""):
        self.sort()
        for i in self:
            print "%s%-29s : %s : %s" % (prefix, i[0], i[1], i[2])

    def parse(self, file):
        f = pylib_io.flexopen(file,"r")
        l = f.readlines()
        pylib_io.flexclose(f)
        for i in l:
            if i.startswith("#"):
                continue
            tmp = string.split(i, ":");
            if len(tmp) == 4:
                del(tmp[0])
            tmp = map(string.strip, tmp)
            self.append((tmp[0], tmp[1], tmp[2]))
    
    def classify(self, prob):
        return self.hash[prob]
    

class eprot_set:
    """
    Class for storing an arbitrary number of E protocols and
    answering interesting questions about them.
    """    
    def __init__(self, names=[]):
        self.protlist = []
        self.sorted = True;
        self.parse(names)        

    def insert(self,prot):
        self.sorted = False;
        self.protlist.append(prot)        

    def parse(self, names, silent=False):
        for name in names:
            prot = eprotocol(name, silent)
            self.insert(prot)

    def __repr__(self):
        res = ""
        sep = "["
        for i in self.protlist:
            res += sep
            res += i.name
            sep = "\n "
        return res+"]"

    def sort(self):
        if not self.sorted:
            self.protlist.sort()

    def find_class(self, problem, round_fun=pylib_discretize.no_round):
        self.sort()
        try:
            res     = self.protlist[0]
            reseval = (InfiniteTime, 10000000, 0)
        except IndexError:
            raise EmptyProtSetException
        for i in self.protlist:
            eval = i.eval_problem(problem, round_fun)
            if eval_is_better(eval, reseval):
                res = i
                reseval = eval
        return res

    def make_classification(self,round_fun=pylib_discretize.no_round):
        self.sort()
        try:
            source = self.protlist[0]
        except IndexError:
            raise EmptyProtSetException
        res = classification()
        for i in source.data.keys():
            prot = self.find_class(i,round_fun)
            status = prot.get_status(i)
            res.append((i, status, prot.name))
        return res


class featurelist(UserList):
    def __init__(self, data=[]):
        UserList.__init__(self)
        for i in data:
            self.append(i)

    def parse(self, file):
        f = pylib_io.flexopen(file,"r")
        l = f.readlines()
        pylib_io.flexclose(f)
        for i in l:
            if i.startswith("#"):
                continue
            tmp = string.split(i, ":");
            name = tmp[0].strip()
            featurestring = (tmp[1].strip())[1:-1]
            features = map(string.strip,string.split(featurestring, ","))
            if len(tmp) == 3: # Old style features
                add_features = tmp[2].strip()
                features.append(add_features[0])
                features.append(add_features[1])
                features.append(add_features[2])
                features.append(add_features[4])
                features.append(add_features[9])
            self.append((name, features))
    def printout(self):
        self.sort()
        for i in self:
            print i[0],":", string.join(i[1],",")