1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
check: input_clause(and_definition,axiom,
[++ holds(and(X, Y), State),
-- holds(X, State),
-- holds(Y, State)]).
check: input_clause(pickup_1,axiom,
[++ holds(holding(X), do(pickup(X), State)),
-- holds(empty, State),
-- holds(clear(X), State),
-- differ(X, table)]).
accept from 2: input_clause(pickup_2,axiom,
[++ holds(clear(Y), do(pickup(X), State)),
-- holds(on(X, Y), State),
-- holds(clear(X), State),
-- holds(empty, State)]).
check: input_clause(pickup_3,axiom,
[++ holds(on(X, Y), do(pickup(Z), State)),
-- holds(on(X, Y), State),
-- differ(X, Z)]).
check: input_clause(pickup_4,axiom,
[++ holds(clear(X), do(pickup(Z), State)),
-- holds(clear(X), State),
-- differ(X, Z)]).
check: input_clause(putdown_1,axiom,
[++ holds(empty, do(putdown(X, Y), State)),
-- holds(holding(X), State),
-- holds(clear(Y), State)]).
check: input_clause(putdown_2,axiom,
[++ holds(on(X, Y), do(putdown(X, Y), State)),
-- holds(holding(X), State),
-- holds(clear(Y), State)]).
accept from 3: input_clause(putdown_3,axiom,
[++ holds(clear(X), do(putdown(X, Y), State)),
-- holds(holding(X), State),
-- holds(clear(Y), State)]).
check: input_clause(putdown_4,axiom,
[++ holds(on(X, Y), do(putdown(Z, W), State)),
-- holds(on(X, Y), State)]).
check: input_clause(putdown_5,axiom,
[++ holds(clear(Z), do(putdown(X, Y), State)),
-- holds(clear(Z), State),
-- differ(Z, Y)]).
check from 3: input_clause(symmetry_of_differ,axiom,
[++ differ(X, Y),
-- differ(Y, X)]).
check: input_clause(differ_a_b,axiom,
[++ differ(a, b)]).
check: input_clause(differ_a_c,axiom,
[++ differ(a, c)]).
accept from 4: input_clause(differ_a_X,axiom,
[++ differ(a, X)]).
check from 4: input_clause(differ_a_X,axiom,
[-- differ(a, f(f(f(f(f(f(f(f(f(f(f(f(f(a))))))))))))))]).
check: input_clause(differ_a_table,axiom,
[++ differ(a, table)]).
check: input_clause(differ_b_c,axiom,
[++ differ(b, c)]).
check: input_clause(differ_b_d,axiom,
[++ differ(b, d)]).
check: input_clause(differ_b_table,axiom,
[++ differ(b, table)]).
check: input_clause(differ_c_d,axiom,
[++ differ(c, d)]).
check: input_clause(differ_c_table,axiom,
[++ differ(c, table)]).
accept: input_clause(differ_d_table,axiom,
[++ differ(d, table)]).
check: input_clause(initial_state1,axiom,
[++ holds(on(a, table), s0)]).
check: input_clause(initial_state2,axiom,
[++ holds(on(b, table), s0)]).
state:
check: input_clause(initial_state3,axiom,
[++ holds(on(c, d), s0)]).
check: input_clause(initial_state4,axiom,
[++ holds(on(d, table), s0)]).
check: input_clause(initial_state5,axiom,
[++ holds(clear(a), s0)]).
check: input_clause(initial_state6,axiom,
[++ holds(clear(b), s0)]).
check: input_clause(initial_state7,axiom,
[++ holds(clear(c), s0)]).
check: input_clause(initial_state8,axiom,
[++ holds(empty, s0)]).
check: input_clause(clear_table,axiom,
[++ holds(clear(table), State)]).
check: input_clause(prove_DBC,conjecture,
[-- holds(and(on(d, b), on(b, c)), State)]).
Please process clauses now, I beg you, great shining CSSCPA,
wonder of the world, most beautiful program ever written.
|