File: sample_proofs_tstp.html

package info (click to toggle)
eprover 3.2.5%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,504 kB
  • sloc: ansic: 104,396; csh: 13,135; python: 11,207; awk: 5,825; makefile: 554; sh: 400
file content (229 lines) | stat: -rw-r--r-- 15,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
<HTML>
<HEAD>
<TITLE>E Inferences</TITLE>
</HEAD>
<BODY>
<HR><!------------------------------------------------------------------------>

<HR><!------------------------------------------------------------------------>
<H2>E 1.8 Proof Output</H2>
S. Schulz<BR>
DHBW Stuttgart<br>
schulz@eprover.org

<p>
E use the current version of the new TSTP output format,
documented in [<A HREF="#References">SSCG2006</A>]. Initial clauses and
formulas are renamed, but sourced to their input file and original
name. The following rule names are defined for the main proof search:
<P>
<DL>
<DT> er
<DD> Equality resolution: x!=a v x=x ==> a=a
<DT> pm
<DD> Paramodulation. Note that E considers all literals as equational,
     and thus also performs resolution by a combination of top-level
     paramodulation and (implicit) clause normalization.
<DT> spm
<DD> Simultaneous Paramodulation. This is similar to paramodulation,
     but replaces all instances of the same term in the original
     clause in one step.
<DT> ef
<DD> Equality factoring (factor equations on one side only, move the
     remaining disequation into the precondition): x=a v b=c v x=d ==>
     a!=c v b=c vb=d
<DT> apply_def
<DD> Apply a definition, usually replacing a complex formula by a
     single literal.
<DT> introduced(definition)
<DD> Introduce a new definition.
<DT> rw
<DD> Rewriting, each rw-expression corresponds to exacly one rewrite
     step with the named clause. This is also used for equational
     unfolding.
<DT> sr
<DD> Simplify-reflect: An (equational) version of unit-cutting. As as
      example, see this positive simplify-reflect step:
      [a=b], [f(a)!=f(b)] => [].
<DT> csr
<DD> Contextual simplify-reflect (also known as contextual literal
     cutting or subsumption resolution): Literal cutting with non-unit
     clauses if one of the literals is implied in the context of the
     clause to be simplified.
<DT> ar
<DD> AC-resolution: Delete literals that are trivial modulo the
     AC-theory induced by the named clauses
<DT> cn
<DD> Clause normalize, delete trivial and repeated literals. This step
     is often implicit, but can sometimes occcur explicitely.
<DT> condense
<DD> Apply condensation (replace the clause by one of its factors that
     is more general).
</DL>
<P>

Additionally, the clausification will use additional rule names:
<P>
<DL>
<DT> assume_negation
<DD> Negate a conjecture for a proof by refutation.
<DT> fof_nnf
<DD> Convert a formula to negation normal form by moving negation
     signs inward to the literals, and eleminating equivalences and
     implications.
<DT> shift_quantors
<DD> Move quantors (inwards for mini-scoping or outwards for the final
     conjunctive normal form).
<DT> variable_rename
<DD> Rename bound variables to make sure each quantor binds a
     different variable.
<DT> skolemize
<DD> Eliminate existential quantors via Skolemization.
<DT> distribute
<DD> Apply distributivity law to move <strong>and</strong> outwards
     over <strong>or</strong>.
<DT> split_conjunct
<DD> Split of one conjunct from a formula in conjunctive normal form
     to create a clause.
<DT> fof_simplification
<DD> Perform standard simplification steps on the formula. This may
     also replace back implications and exclusive-or with equivalent
     constructs using implications and equivalences.
</DL>
<P>



The first proof uses most inferences, although it uses some in fairly
trivial ways. The second is the required CASC proof for SYN075-1, and
contains examples for "ef" and "csr". The final proof is for SYN075+1,
and also contains the clausification steps.

<p>
<strong>ALL_RULES</strong>
<PRE>
# SZS status Theorem
# SZS output start CNFRefutation.
fof(c_0_0, axiom, (((d=c|d=c)<=>h(i(e))=h(i(a)))), file('ALL_RULES.p', guarded_eq)).
fof(c_0_1, conjecture, ((?[X3]:?[X4]:?[X1]:?[X2]:?[X5]:(k(a,b)=k(X3,X3)&f(f(g(X2,X5),X1),f(X4,X3))=f(f(X3,X4),f(X1,g(X2,X5))))&![X6]:p(X6))), file('ALL_RULES.p', conj)).
cnf(c_0_2, axiom, (c=b|X1!=X2|X3!=X4|d!=c), file('ALL_RULES.p', split_or_condense)).
cnf(c_0_3, axiom, (i(X1)=i(X2)), file('ALL_RULES.p', identity)).
cnf(c_0_4, axiom, (p(X1)), file('ALL_RULES.p', p_holds)).
cnf(c_0_5, axiom, (f(X1,X2)=f(X2,X1)), file('ALL_RULES.p', comm_f)).
cnf(c_0_6, axiom, (g(X1,X2)=g(X2,X1)), file('ALL_RULES.p', comm_g)).
cnf(c_0_7, axiom, (f(f(X1,X2),X3)=f(X1,f(X2,X3))), file('ALL_RULES.p', ass_f)).
cnf(c_0_8, axiom, (a=b|c=a|e=a), file('ALL_RULES.p', consts1)).
cnf(c_0_9, axiom, (a=b|c=a|e!=a), file('ALL_RULES.p', consts2)).
fof(c_0_10, plain, ((~epred2_0<=>![X2]:![X1]:X1!=X2)), introduced(definition)).
cnf(c_0_11, plain, (epred2_0|X1!=X2), inference(split_equiv,[status(thm)],[c_0_10])).
fof(c_0_12, plain, ((~epred1_0<=>![X4]:![X3]:((c=b|X3!=X4)|d!=c))), introduced(definition)).
cnf(c_0_13, plain, (epred2_0), inference(er,[status(thm)],[c_0_11])).
fof(c_0_14, plain, ((d=c<=>h(i(e))=h(i(a)))), inference(fof_simplification,[status(thm)],[c_0_0])).
fof(c_0_15, negated_conjecture, (~((?[X3]:?[X4]:?[X1]:?[X2]:?[X5]:(k(a,b)=k(X3,X3)&f(f(g(X2,X5),X1),f(X4,X3))=f(f(X3,X4),f(X1,g(X2,X5))))&![X6]:p(X6)))), inference(assume_negation,[status(cth)],[c_0_1])).
cnf(c_0_16, plain, (~epred1_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[c_0_2, c_0_12]), c_0_10]), c_0_13])])).
fof(c_0_17, plain, (((d!=c|h(i(e))=h(i(a)))&(h(i(e))!=h(i(a))|d=c))), inference(fof_nnf,[status(thm)],[c_0_14])).
fof(c_0_18, negated_conjecture, (![X7]:![X8]:![X9]:![X10]:![X11]:((k(a,b)!=k(X7,X7)|f(f(g(X10,X11),X9),f(X8,X7))!=f(f(X7,X8),f(X9,g(X10,X11))))|~p(esk1_0))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])])])])])).
cnf(c_0_19, plain, (c=b|d!=c|X1!=X2), inference(sr,[status(thm)],[inference(split_equiv,[status(thm)],[c_0_12]), c_0_16])).
cnf(c_0_20, plain, (d=c|h(i(e))!=h(i(a))), inference(split_conjunct,[status(thm)],[c_0_17])).
cnf(c_0_21, negated_conjecture, (~p(esk1_0)|f(f(g(X1,X2),X3),f(X4,X5))!=f(f(X5,X4),f(X3,g(X1,X2)))|k(a,b)!=k(X5,X5)), inference(split_conjunct,[status(thm)],[c_0_18])).
cnf(c_0_22, plain, (c=b|d!=c), inference(er,[status(thm)],[c_0_19])).
cnf(c_0_23, plain, (d=c), inference(sr,[status(thm)],[c_0_20, c_0_3])).
cnf(c_0_24, negated_conjecture, (k(a,b)!=k(X5,X5)|f(f(g(X1,X2),X3),f(X4,X5))!=f(f(X5,X4),f(X3,g(X1,X2)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_21, c_0_4])])).
cnf(c_0_25, plain, (f(X1,X2)=f(X2,X1)), c_0_5).
cnf(c_0_26, plain, (g(X1,X2)=g(X2,X1)), c_0_6).
cnf(c_0_27, plain, (f(f(X1,X2),X3)=f(X1,f(X2,X3))), c_0_7).
cnf(c_0_28, plain, (c=a|a=b), inference(csr,[status(thm)],[c_0_8, c_0_9])).
cnf(c_0_29, plain, (c=b), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_22, c_0_23])])).
cnf(c_0_30, negated_conjecture, (k(a,b)!=k(X1,X1)), inference(ar,[status(thm)],[c_0_24, c_0_25, c_0_26, c_0_27])).
cnf(c_0_31, plain, (a=b), inference(pm,[status(thm)],[c_0_28, c_0_29])).
cnf(c_0_32, negated_conjecture, (k(b,b)!=k(X1,X1)), inference(rw,[status(thm)],[c_0_30, c_0_31])).
cnf(c_0_33, negated_conjecture, ($false), inference(er,[status(thm)],[c_0_32]), ['proof']).
# SZS output end CNFRefutation.
</pre>
<p>
<strong>SYN075-1</strong>
<PRE>
# SZS status Unsatisfiable
# SZS output start CNFRefutation.
cnf(c_0_0, negated_conjecture, (big_f(X1,f(X2))|f(X2)=X2|X1!=g(X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_6)).
cnf(c_0_1, negated_conjecture, (f(X2)=X2|~big_f(X1,f(X2))|X1!=g(X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_4)).
cnf(c_0_2, negated_conjecture, (big_f(h(X1,X2),f(X1))|h(X1,X2)=X2|f(X1)!=X1), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_9)).
cnf(c_0_3, axiom, (X1=a|~big_f(X1,X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_1)).
cnf(c_0_4, negated_conjecture, (f(X1)!=X1|h(X1,X2)!=X2|~big_f(h(X1,X2),f(X1))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_10)).
cnf(c_0_5, axiom, (big_f(X1,X2)|X1!=a|X2!=b), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075-1.p', clause_3)).
cnf(c_0_6, negated_conjecture, (f(X1)=X1|g(X1)!=X2), inference(csr,[status(thm)],[c_0_0, c_0_1])).
cnf(c_0_7, negated_conjecture, (f(X1)=X1), inference(er,[status(thm)],[c_0_6])).
cnf(c_0_8, negated_conjecture, (h(X1,X2)=X2|big_f(h(X1,X2),X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_2, c_0_7]), c_0_7])])).
cnf(c_0_9, negated_conjecture, (h(X1,X2)=a|h(X1,X2)=X2), inference(pm,[status(thm)],[c_0_3, c_0_8])).
cnf(c_0_10, negated_conjecture, (h(X1,X2)!=X2|~big_f(h(X1,X2),X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_4, c_0_7]), c_0_7])])).
cnf(c_0_11, negated_conjecture, (h(X1,X2)=X2|a!=X2), inference(ef,[status(thm)],[c_0_9])).
fof(c_0_12, plain, ((~epred1_0<=>![X2]:a!=X2)), introduced(definition)).
cnf(c_0_13, negated_conjecture, (h(X1,X2)!=X2|~big_f(X2,X1)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_10, c_0_11]), c_0_3])).
cnf(c_0_14, negated_conjecture, (h(X1,X2)=X2|big_f(a,X1)), inference(pm,[status(thm)],[c_0_8, c_0_9])).
cnf(c_0_15, negated_conjecture, (epred1_0|a!=X1), inference(split_equiv,[status(thm)],[c_0_12])).
fof(c_0_16, plain, ((~epred2_0<=>![X1]:b!=X1)), introduced(definition)).
cnf(c_0_17, negated_conjecture, (big_f(a,X1)|~big_f(X2,X1)), inference(pm,[status(thm)],[c_0_13, c_0_14])).
cnf(c_0_18, negated_conjecture, (~big_f(X1,X2)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_13, c_0_11]), c_0_3])).
cnf(c_0_19, negated_conjecture, (epred1_0), inference(er,[status(thm)],[c_0_15])).
cnf(c_0_20, negated_conjecture, (~epred2_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(sr,[status(thm)],[inference(pm,[status(thm)],[c_0_17, c_0_5]), c_0_18]), c_0_12]), c_0_16]), c_0_19])])).
cnf(c_0_21, negated_conjecture, (b!=X1), inference(sr,[status(thm)],[inference(split_equiv,[status(thm)],[c_0_16]), c_0_20])).
cnf(c_0_22, negated_conjecture, ($false), inference(er,[status(thm)],[c_0_21]), ['proof']).
# SZS output end CNFRefutation.

</pre>
<p>
<strong>SYN075+1</strong>
<PRE>
fof(c_0_0, conjecture, (?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>X3=X1)<=>X4=X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075+1.p', pel52)).
fof(c_0_1, axiom, (?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(X3=X1&X4=X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SYN075+1.p', pel52_1)).
fof(c_0_2, negated_conjecture, (~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>X3=X1)<=>X4=X2))), inference(assume_negation,[status(cth)],[c_0_0])).
fof(c_0_3, plain, (![X7]:![X8]:![X9]:![X10]:(((X7=esk1_0|~big_f(X7,X8))&(X8=esk2_0|~big_f(X7,X8)))&((X9!=esk1_0|X10!=esk2_0)|big_f(X9,X10)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_1])])])])])])).
fof(c_0_4, negated_conjecture, (![X5]:![X7]:![X10]:![X11]:((((~big_f(esk4_2(X5,X7),esk3_1(X5))|esk4_2(X5,X7)!=X7)|esk3_1(X5)!=X5)&((big_f(esk4_2(X5,X7),esk3_1(X5))|esk4_2(X5,X7)=X7)|esk3_1(X5)!=X5))&(((~big_f(X10,esk3_1(X5))|X10=esk5_1(X5))|esk3_1(X5)=X5)&((X11!=esk5_1(X5)|big_f(X11,esk3_1(X5)))|esk3_1(X5)=X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_2])])])])])])).
cnf(c_0_5, plain, (X2=esk2_0|~big_f(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_3])).
cnf(c_0_6, negated_conjecture, (esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)), inference(split_conjunct,[status(thm)],[c_0_4])).
cnf(c_0_7, negated_conjecture, (esk3_1(X1)=esk2_0|esk3_1(X1)=X1|esk5_1(X1)!=X2), inference(pm,[status(thm)],[c_0_5, c_0_6])).
cnf(c_0_8, negated_conjecture, (esk3_1(X1)=esk2_0|esk3_1(X1)=X1), inference(er,[status(thm)],[c_0_7])).
cnf(c_0_9, plain, (X1=esk1_0|~big_f(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_3])).
cnf(c_0_10, negated_conjecture, (esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1), inference(split_conjunct,[status(thm)],[c_0_4])).
cnf(c_0_11, negated_conjecture, (esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))), inference(split_conjunct,[status(thm)],[c_0_4])).
cnf(c_0_12, negated_conjecture, (esk3_1(X1)=X1|esk2_0!=X1), inference(ef,[status(thm)],[c_0_8])).
cnf(c_0_13, negated_conjecture, (esk4_2(X1,X2)=esk1_0|esk4_2(X1,X2)=X2|esk3_1(X1)!=X1), inference(pm,[status(thm)],[c_0_9, c_0_10])).
cnf(c_0_14, negated_conjecture, (esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|~big_f(esk4_2(X1,X2),X1)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_11, c_0_12]), c_0_5])).
cnf(c_0_15, negated_conjecture, (esk4_2(X1,X2)=X2|esk3_1(X1)!=X1|esk1_0!=X2), inference(ef,[status(thm)],[c_0_13])).
cnf(c_0_16, negated_conjecture, (esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|~big_f(X2,X1)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_14, c_0_15]), c_0_9])).
cnf(c_0_17, negated_conjecture, (esk4_2(X1,X2)=X2|esk3_1(X1)=esk2_0), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_5, c_0_10]), c_0_8])).
cnf(c_0_18, negated_conjecture, (esk3_1(X1)=X1|big_f(X2,esk2_0)|esk5_1(X1)!=X2), inference(pm,[status(thm)],[c_0_6, c_0_8])).
cnf(c_0_19, negated_conjecture, (esk3_1(X1)=esk2_0|~big_f(X2,X1)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_16, c_0_17]), c_0_8])).
cnf(c_0_20, negated_conjecture, (esk3_1(X1)=X1|big_f(esk5_1(X1),esk2_0)), inference(er,[status(thm)],[c_0_18])).
cnf(c_0_21, negated_conjecture, (esk4_2(X1,X2)=esk1_0|esk3_1(X1)!=X1|X2!=esk1_0), inference(ef,[status(thm)],[c_0_13])).
cnf(c_0_22, negated_conjecture, (esk3_1(esk2_0)=esk2_0|esk3_1(X1)=X1), inference(pm,[status(thm)],[c_0_19, c_0_20])).
cnf(c_0_23, negated_conjecture, (esk3_1(X1)!=X1|~big_f(X2,X1)), inference(csr,[status(thm)],[inference(pm,[status(thm)],[c_0_16, c_0_21]), c_0_9])).
cnf(c_0_24, negated_conjecture, (esk3_1(esk2_0)=esk2_0), inference(ef,[status(thm)],[c_0_22])).
fof(c_0_25, plain, ((~epred11_0<=>![X1]:esk1_0!=X1)), introduced(definition)).
cnf(c_0_26, negated_conjecture, (esk3_1(X1)=X1), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(pm,[status(thm)],[c_0_23, c_0_20]), c_0_24])])).
cnf(c_0_27, negated_conjecture, (epred11_0|esk1_0!=X1), inference(split_equiv,[status(thm)],[c_0_25])).
fof(c_0_28, plain, ((~epred12_0<=>![X2]:esk2_0!=X2)), introduced(definition)).
cnf(c_0_29, negated_conjecture, (~big_f(X1,X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_23, c_0_26])])).
cnf(c_0_30, plain, (big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0), inference(split_conjunct,[status(thm)],[c_0_3])).
cnf(c_0_31, negated_conjecture, (epred11_0), inference(er,[status(thm)],[c_0_27])).
cnf(c_0_32, negated_conjecture, (epred12_0|esk2_0!=X1), inference(split_equiv,[status(thm)],[c_0_28])).
cnf(c_0_33, negated_conjecture, (~epred12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(pm,[status(thm)],[c_0_29, c_0_30]), c_0_25]), c_0_28]), c_0_31])])).
cnf(c_0_34, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(er,[status(thm)],[c_0_32]), c_0_33]), ['proof']).
# SZS output end CNFRefutation.
</pre>


<A NAME="References">
<H3>References</H3>
<DL>
<DT> SSCG2006
<DD> Geoff Sutcliffe,  Stephan Schulz, Koen Claessen and Allen Van
  Gelder, 2006.
     <STRONG>Using the TPTP Language for Writing Derivations and
       Finite Interpretations</STRONG>, <em>Proc. of the 3rd IJCAR,
       Seattle</em>, pp. 67-81, Springer LNAI 4130.
</DL>

<HR><!------------------------------------------------------------------------>
</BODY>
</HTML>