1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
/***************************************************************************
* Copyright (C) 2011 by Pere RÃ fols Soler *
* sapista2@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/***************************************************************************
This file is the implementation of the EQ plugin
This plugin is inside the Sapista Plugins Bundle
This file implements functionalities for a large numbers of equalizers
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <fftw3.h>
#include <lv2/lv2plug.in/ns/lv2core/lv2.h>
#include <lv2/lv2plug.in/ns/ext/atom/forge.h>
#include <lv2/lv2plug.in/ns/ext/atom/util.h>
#include <lv2/lv2plug.in/ns/ext/urid/urid.h>
#include "uris.h"
#include "gui/eq_defines.h"
#include "dsp/vu.h"
#include "dsp/db.h"
#include "dsp/filter.h"
#include "dsp/midside.h"
//Data from CMake
#define NUM_BANDS @Eq_Bands_Count@
#define NUM_CHANNELS @Eq_Channels_Count@
#define EQ_URI @Eq_Uri@
typedef struct {
//Plugin ports
float *fBypass;
float *fInGain;
float *fOutGain;
float *fBandGain[NUM_BANDS];
float *fBandFreq[NUM_BANDS];
float *fBandParam[NUM_BANDS];
float *fBandType[NUM_BANDS];
float *fBandEnabled[NUM_BANDS];
#if NUM_CHANNELS == 2
float *fMidSideEnable;
int iMidSideMode[NUM_BANDS];
#endif
float *fInput[NUM_CHANNELS];
float *fOutput[NUM_CHANNELS];
float *fVuIn[NUM_CHANNELS];
float *fVuOut[NUM_CHANNELS];
LV2_Atom_Sequence *notify_port;
const LV2_Atom_Sequence* control_port;
//Features
LV2_URID_Map *map;
//Forge for creating atoms
LV2_Atom_Forge forge;
LV2_Atom_Forge_Frame notify_frame;
//Atom URID
Eq10qURIs uris;
double sampleRate;
//Plugin DSP
Filter *ProcFilter[NUM_BANDS][NUM_CHANNELS]; //Dummy pointers to Filter structures, used in processing loop. Can point to PortFilter or FlatFilter depending on the MidSide option
Filter *PortFilter[NUM_BANDS]; //Filter used for reading LV2 ports and containing the actual coeficients
Filter *FlatFilter; //Allways contains coeficients for a flat filter in order to be used as a bypass in MidSide processing option
Buffers buf[NUM_BANDS][NUM_CHANNELS];
Vu *InputVu[NUM_CHANNELS];
Vu *OutputVu[NUM_CHANNELS];
//FFT Analysis
int fft_ix, fft_ix2; //Index to follow buffers
double *fft_in, *fft_out;
double *fft_in2, *fft_out2; //Time shifted-seconf-fft-vectors
fftw_plan fft_p, fft_p2;
int fft_on;
double fft_normalization;
} EQ;
static void cleanupEQ(LV2_Handle instance)
{
EQ *plugin = (EQ *)instance;
int i;
FilterClean(plugin->FlatFilter);
for(i=0; i<NUM_BANDS; i++)
{
FilterClean(plugin->PortFilter[i]);
}
for(i=0; i<NUM_CHANNELS; i++)
{
VuClean(plugin->InputVu[i]);
VuClean(plugin->OutputVu[i]);
}
fftw_destroy_plan(plugin->fft_p);
fftw_free(plugin->fft_in); fftw_free(plugin->fft_out);
fftw_destroy_plan(plugin->fft_p2);
fftw_free(plugin->fft_in2); fftw_free(plugin->fft_out2);
free(instance);
}
static void connectPortEQ(LV2_Handle instance, uint32_t port, void *data)
{
EQ *plugin = (EQ *)instance;
//Connect standar ports
switch (port)
{
case EQ_BYPASS:
plugin->fBypass = data;
break;
case EQ_INGAIN:
plugin->fInGain = data;
break;
case EQ_OUTGAIN:
plugin->fOutGain = data;
break;
default:
//Connect audio input ports
if(port >= PORT_OFFSET && port < (PORT_OFFSET + NUM_CHANNELS))
{
plugin->fInput[port - PORT_OFFSET] = data;
}
//Connect audio output ports
if(port >= (PORT_OFFSET + NUM_CHANNELS) && port < (PORT_OFFSET + 2*NUM_CHANNELS))
{
plugin->fOutput[port - PORT_OFFSET - NUM_CHANNELS] = data;
}
//Connect BandGain ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + NUM_BANDS))
{
plugin->fBandGain[port - PORT_OFFSET - 2*NUM_CHANNELS] = data;
}
//Connect BandFreq ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + NUM_BANDS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 2*NUM_BANDS))
{
plugin->fBandFreq[port - PORT_OFFSET - 2*NUM_CHANNELS - NUM_BANDS] = data;
}
//Connect BandParam ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + 2*NUM_BANDS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 3*NUM_BANDS))
{
plugin->fBandParam[port - PORT_OFFSET - 2*NUM_CHANNELS - 2*NUM_BANDS] = data;
}
//Connect BandType ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + 3*NUM_BANDS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 4*NUM_BANDS))
{
plugin->fBandType[port - PORT_OFFSET - 2*NUM_CHANNELS - 3*NUM_BANDS] = data;
}
//Connect BandEnabled ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + 4*NUM_BANDS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS))
{
plugin->fBandEnabled[port - PORT_OFFSET - 2*NUM_CHANNELS - 4*NUM_BANDS] = data;
}
//Connect VuInput ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + NUM_CHANNELS))
{
plugin->fVuIn[port - PORT_OFFSET - 2*NUM_CHANNELS - 5*NUM_BANDS] = data;
}
//Connect VuOutput ports
else if(port >= (PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + NUM_CHANNELS) && port < (PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + 2*NUM_CHANNELS))
{
plugin->fVuOut[port - PORT_OFFSET - 2*NUM_CHANNELS - 5*NUM_BANDS - NUM_CHANNELS] = data;
}
//Connect Atom notify_port output port to GUI
else if(port == PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + 2*NUM_CHANNELS)
{
plugin->notify_port = (LV2_Atom_Sequence*)data;
}
//Connect Atom control_port input port from GUI
else if (port == PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + 2*NUM_CHANNELS + 1)
{
plugin->control_port = (const LV2_Atom_Sequence*)data;
}
//Connect the MidSide Mode port only for stereo versions
else if (port == PORT_OFFSET + 2*NUM_CHANNELS + 5*NUM_BANDS + 2*NUM_CHANNELS + 2)
{
#if NUM_CHANNELS == 2
plugin->fMidSideEnable = data;
#endif
}
break;
}
}
static LV2_Handle instantiateEQ(const LV2_Descriptor *descriptor, double s_rate, const char *path, const LV2_Feature *const * features)
{
int i,ch;
EQ *plugin_data = (EQ *)malloc(sizeof(EQ));
plugin_data->sampleRate = s_rate;
plugin_data->FlatFilter = FilterInit(s_rate);
calcCoefs(plugin_data->FlatFilter, 0.0, 20.0, 1.0, F_PEAK, 0.0); //Create a always-flat filter in FlatFilter
for(i=0; i<NUM_BANDS; i++)
{
plugin_data->PortFilter[i] = FilterInit(s_rate);
for(ch=0; ch<NUM_CHANNELS; ch++)
{
flushBuffers(&plugin_data->buf[i][ch]);
plugin_data->ProcFilter[i][ch] = plugin_data->PortFilter[i]; //Initially all filters points to LV2 Port controlled filters
}
#if NUM_CHANNELS == 2
plugin_data->iMidSideMode[i] = MS_DUAL_CHANNEL;
#endif
}
for(ch=0; ch<NUM_CHANNELS; ch++)
{
plugin_data->InputVu[ch] = VuInit(s_rate);
plugin_data->OutputVu[ch] = VuInit(s_rate);
}
// Get host features
for (i = 0; features[i]; ++i)
{
if (!strcmp(features[i]->URI, LV2_URID__map))
{
plugin_data->map = (LV2_URID_Map*)features[i]->data;
}
}
if (!plugin_data->map)
{
printf("EQ10Q Error: Host does not support urid:map\n");
goto fail;
}
// Map URIs and initialise forge
map_eq10q_uris(plugin_data->map, &plugin_data->uris);
lv2_atom_forge_init(&plugin_data->forge, plugin_data->map);
//Initialize FFT objects
plugin_data->fft_ix = 0;
plugin_data->fft_ix2 = FFT_N/2;
plugin_data->fft_in = (double*) fftw_malloc(sizeof(double) * FFT_N);
plugin_data->fft_in2 = (double*) fftw_malloc(sizeof(double) * FFT_N);
plugin_data->fft_out = (double*) fftw_malloc(sizeof(double) * FFT_N);
plugin_data->fft_out2 = (double*) fftw_malloc(sizeof(double) * FFT_N);
plugin_data->fft_p = fftw_plan_r2r_1d(FFT_N, plugin_data->fft_in, plugin_data->fft_out, FFTW_R2HC, FFTW_ESTIMATE);
plugin_data->fft_p2 = fftw_plan_r2r_1d(FFT_N, plugin_data->fft_in2, plugin_data->fft_out2, FFTW_R2HC, FFTW_ESTIMATE);
plugin_data->fft_on = 0; //Initialy no GUI then no need to compute FFT
plugin_data->fft_normalization = pow(2.0/ ((double) FFT_N), 2.0);
for(i = 0; i< FFT_N; i++)
{
plugin_data->fft_in[i] = 0;
plugin_data->fft_in2[i] = 0;
plugin_data->fft_out[i] = 0;
plugin_data->fft_out2[i] = 0; //First fft_out2 samples will not be calculated by FFT (first-time shift)
}
return (LV2_Handle)plugin_data;
fail:
free(plugin_data);
return 0;
}
static void runEQ_v2(LV2_Handle instance, uint32_t sample_count)
{
EQ *plugin_data = (EQ *)instance;
//Get values of control ports
const int iBypass = *(plugin_data->fBypass) > 0.0f ? 1 : 0;
const float fInGain = dB2Lin(*(plugin_data->fInGain));
const float fOutGain = dB2Lin(*(plugin_data->fOutGain));
#if NUM_CHANNELS == 2
const double dMidSideModeIdOn = (double)(*(plugin_data->fMidSideEnable));
#endif
int bd, pos; //loop index
//Set up forge to write directly to notify output port.
const uint32_t notify_capacity = plugin_data->notify_port->atom.size;
lv2_atom_forge_set_buffer(&plugin_data->forge, (uint8_t*)plugin_data->notify_port, notify_capacity);
lv2_atom_forge_sequence_head(&plugin_data->forge, &plugin_data->notify_frame, 0);
//printf("Notify port size %d\n", notify_capacity);
//Interpolation coefs force to recompute
int recalcCoefs[NUM_BANDS];
int forceRecalcCoefs = 0;
double fftInSample; //Sample to push throught the FFT buffer
double sampleL; //Current processing sample left signal
#if NUM_CHANNELS == 2
double sampleR; //Current processing sample right signal
#endif
//Read EQ Ports and mark to recompute if changed
for(bd = 0; bd<NUM_BANDS; bd++)
{
if(dB2Lin(*(plugin_data->fBandGain[bd])) != plugin_data->PortFilter[bd]->gain ||
*plugin_data->fBandFreq[bd] != plugin_data->PortFilter[bd]->freq ||
*plugin_data->fBandParam[bd] != plugin_data->PortFilter[bd]->q ||
((int)(*plugin_data->fBandType[bd])) != plugin_data->PortFilter[bd]->iType ||
((float)(0x01 & ((int)(*plugin_data->fBandEnabled[bd])))) != plugin_data->PortFilter[bd]->enable)
{
recalcCoefs[bd] = 1;
forceRecalcCoefs = 1;
}
else
{
recalcCoefs[bd] = 0;
}
//Check mid-side ports
#if NUM_CHANNELS == 2
if((((int)(*plugin_data->fBandEnabled[bd])) >> 1) != plugin_data->iMidSideMode[bd])
{
plugin_data->iMidSideMode[bd] = ((int)(*plugin_data->fBandEnabled[bd])) >> 1;
switch(plugin_data->iMidSideMode[bd])
{
case MS_DUAL_CHANNEL:
plugin_data->ProcFilter[bd][0] = plugin_data->PortFilter[bd];
plugin_data->ProcFilter[bd][1] = plugin_data->PortFilter[bd];
break;
case MS_L_MID_MODE:
plugin_data->ProcFilter[bd][0] = plugin_data->PortFilter[bd];
plugin_data->ProcFilter[bd][1] = plugin_data->FlatFilter;
break;
case MS_R_SIDE_MODE:
plugin_data->ProcFilter[bd][0] = plugin_data->FlatFilter;
plugin_data->ProcFilter[bd][1] = plugin_data->PortFilter[bd];
break;
}
}
#endif
}
//Read input Atom control port (Data from GUI)
if(plugin_data->control_port)
{
const LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(plugin_data->control_port)->body);
// For each incoming message...
while (!lv2_atom_sequence_is_end(&plugin_data->control_port->body, plugin_data->control_port->atom.size, ev))
{
// If the event is an atom:Object
if (ev->body.type == plugin_data->uris.atom_Object)
{
const LV2_Atom_Object* obj = (const LV2_Atom_Object*)&ev->body;
if (obj->body.otype == plugin_data->uris.atom_fft_on)
{
plugin_data->fft_on = 1;
}
else if(obj->body.otype == plugin_data->uris.atom_fft_off)
{
plugin_data->fft_on = 0;
plugin_data->fft_ix = 0;
plugin_data->fft_ix2 = FFT_N/2;
}
else if(obj->body.otype == plugin_data->uris.atom_sample_rate_request)
{
//Send sample rate
LV2_Atom_Forge_Frame frameSR;
lv2_atom_forge_frame_time(&plugin_data->forge, 0);
lv2_atom_forge_object( &plugin_data->forge, &frameSR, 0, plugin_data->uris.atom_sample_rate_response);
lv2_atom_forge_key(&plugin_data->forge, plugin_data->uris.atom_sample_rate_key);
lv2_atom_forge_double(&plugin_data->forge, plugin_data->sampleRate);
lv2_atom_forge_pop(&plugin_data->forge, &frameSR);
// Close off sequence
lv2_atom_forge_pop(&plugin_data->forge, &plugin_data->notify_frame);
}
}
ev = lv2_atom_sequence_next(ev);
}
}
//Compute the filter
for (pos = 0; pos < sample_count; pos++)
{
//Get input
sampleL = (double)plugin_data->fInput[0][pos];
DENORMAL_TO_ZERO(sampleL);
#if NUM_CHANNELS == 2
sampleR = (double)plugin_data->fInput[1][pos];
DENORMAL_TO_ZERO(sampleR);
#endif
//The input amplifier
sampleL *= fInGain;
fftInSample = sampleL;
//Update VU input sample
SetSample(plugin_data->InputVu[0], sampleL);
#if NUM_CHANNELS == 2
//The input amplifier
sampleR *= fInGain;
fftInSample = 0.5*sampleL + 0.5*sampleR;
//Update VU input sample
SetSample(plugin_data->InputVu[1], sampleR);
#endif
//Process every band
if(!iBypass)
{
//FFT of input data after input gain
if(plugin_data->fft_on)
{
//Hanning Windowing
plugin_data->fft_in[plugin_data->fft_ix] = fftInSample* 0.5 * (1.0-cos((2.0*PI*((double)plugin_data->fft_ix))/((double)(FFT_N-1))));
plugin_data->fft_in2[plugin_data->fft_ix2] = fftInSample* 0.5 * (1.0-cos((2.0*PI*((double)plugin_data->fft_ix2))/((double)(FFT_N-1))));
plugin_data->fft_ix++;
plugin_data->fft_ix2++;
if(plugin_data->fft_ix == FFT_N)
{
//FFT inout buffer full compute
fftw_execute(plugin_data->fft_p);
//Compute FFT Normalized Magnitude^2
double real, img;
int ffti;
for(ffti = 0; ffti<= FFT_N/2; ffti++)
{
real = plugin_data->fft_out[ffti];
if(ffti > 0 && ffti < (FFT_N/2))
{
img = plugin_data->fft_out[FFT_N -ffti];
}
else
{
img = 0.0;
}
plugin_data->fft_out[ffti] = 0.5*(plugin_data->fft_normalization*(real*real + img*img) + plugin_data->fft_out2[ffti]);
}
plugin_data->fft_ix = 0;
//Send FFT data vector
LV2_Atom_Forge_Frame frameFft;
lv2_atom_forge_frame_time(&plugin_data->forge, 0);
lv2_atom_forge_object( &plugin_data->forge, &frameFft, 0, plugin_data->uris.atom_fft_data_event);
lv2_atom_forge_key(&plugin_data->forge, plugin_data->uris.atom_fft_data_key);
lv2_atom_forge_vector(&plugin_data->forge, sizeof(double), plugin_data->uris.atom_Double, ((FFT_N/2) + 1), plugin_data->fft_out);
lv2_atom_forge_pop(&plugin_data->forge, &frameFft);
// Close off sequence
lv2_atom_forge_pop(&plugin_data->forge, &plugin_data->notify_frame);
}
if(plugin_data->fft_ix2 == FFT_N)
{
//FFT inout buffer full compute
fftw_execute(plugin_data->fft_p2);
//Compute FFT Normalized Magnitude^2
double real, img;
int ffti;
for(ffti = 0; ffti<= FFT_N/2; ffti++)
{
real = plugin_data->fft_out2[ffti];
if(ffti > 0 && ffti < (FFT_N/2))
{
img = plugin_data->fft_out2[FFT_N -ffti];
}
else
{
img = 0.0;
}
plugin_data->fft_out2[ffti] = plugin_data->fft_normalization*(real*real + img*img);
}
plugin_data->fft_ix2 = 0;
}
}
//Coefs Interpolation
if(forceRecalcCoefs)
{
for(bd = 0; bd<NUM_BANDS; bd++)
{
if(recalcCoefs[bd])
{
calcCoefs(plugin_data->PortFilter[bd],
dB2Lin(*(plugin_data->fBandGain[bd])),
*plugin_data->fBandFreq[bd],
*plugin_data->fBandParam[bd],
(int)(*plugin_data->fBandType[bd]),
((float)(0x01 & ((int)(*plugin_data->fBandEnabled[bd])))));
}
}
}
//EQ PROCESSOR
//Band0
#if NUM_CHANNELS == 2
LR2MS(&sampleL, &sampleR, dMidSideModeIdOn);
#endif
computeFilter(plugin_data->ProcFilter[0][0], &plugin_data->buf[0][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[0][1], &plugin_data->buf[0][1],&sampleR);
#endif
#if NUM_BANDS >= 4
//BAND 1
computeFilter(plugin_data->ProcFilter[1][0], &plugin_data->buf[1][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[1][1], &plugin_data->buf[1][1],&sampleR);
#endif
//BAND 2
computeFilter(plugin_data->ProcFilter[2][0], &plugin_data->buf[2][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[2][1], &plugin_data->buf[2][1],&sampleR);
#endif
//BAND 3
computeFilter(plugin_data->ProcFilter[3][0], &plugin_data->buf[3][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[3][1], &plugin_data->buf[3][1],&sampleR);
#endif
#endif
#if NUM_BANDS >= 6
//BAND 4
computeFilter(plugin_data->ProcFilter[4][0], &plugin_data->buf[4][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[4][1], &plugin_data->buf[4][1],&sampleR);
#endif
//BAND 5
computeFilter(plugin_data->ProcFilter[5][0], &plugin_data->buf[5][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[5][1], &plugin_data->buf[5][1],&sampleR);
#endif
#endif
#if NUM_BANDS ==10
//BAND 6
computeFilter(plugin_data->ProcFilter[6][0], &plugin_data->buf[6][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[6][1], &plugin_data->buf[6][1],&sampleR);
#endif
//BAND 7
computeFilter(plugin_data->ProcFilter[7][0], &plugin_data->buf[7][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[7][1], &plugin_data->buf[7][1],&sampleR);
#endif
//BAND 8
computeFilter(plugin_data->ProcFilter[8][0], &plugin_data->buf[8][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[8][1], &plugin_data->buf[8][1],&sampleR);
#endif
//BAND 9
computeFilter(plugin_data->ProcFilter[9][0], &plugin_data->buf[9][0],&sampleL);
#if NUM_CHANNELS == 2
computeFilter(plugin_data->ProcFilter[9][1], &plugin_data->buf[9][1],&sampleR);
#endif
#endif
//The output amplifier
sampleL *= fOutGain;
//Update VU output sample
SetSample(plugin_data->OutputVu[0], sampleL);
#if NUM_CHANNELS == 2
//The output amplifier
sampleR *= fOutGain;
//Update VU output sample
SetSample(plugin_data->OutputVu[1], sampleR);
//Go back to LR signals, be aware that out gains and Vumeters Are M/S or L/R depending on MidSide selected mode
MS2LR(&sampleL, &sampleR, dMidSideModeIdOn);
#endif
}
//Write on output
plugin_data->fOutput[0][pos] = (float)sampleL;
#if NUM_CHANNELS == 2
plugin_data->fOutput[1][pos] = (float)sampleR;
#endif
}
//Update VU ports
*(plugin_data->fVuIn[0]) = ComputeVu(plugin_data->InputVu[0], sample_count);
*(plugin_data->fVuOut[0]) = ComputeVu(plugin_data->OutputVu[0], sample_count);
#if NUM_CHANNELS == 2
*(plugin_data->fVuIn[1]) = ComputeVu(plugin_data->InputVu[1], sample_count);
*(plugin_data->fVuOut[1]) = ComputeVu(plugin_data->OutputVu[1], sample_count);
#endif
}
static const LV2_Descriptor eqDescriptor = {
EQ_URI,
instantiateEQ,
connectPortEQ,
NULL,
runEQ_v2,
NULL,
cleanupEQ,
NULL
};
LV2_SYMBOL_EXPORT
const LV2_Descriptor *lv2_descriptor(uint32_t index)
{
switch (index) {
case 0:
return &eqDescriptor;
default:
return NULL;
}
}
|