1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file rho-mat.cc Functions for density and gradient evaluation.
The density can be evaluated at entire batches of grid points.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include <stdio.h>
#include "realtype.h"
typedef ergo_real real;
#include "mat_gblas.h"
#include "rho-mat.h"
#if !defined(restrict)
#define restrict
#endif
/** helper function for zeroing only used blocks of orbitals. Selected
values for the first index are looped over, and all allowed values
of the second index.
@param tmp the matrix[nbast][nvclen]
@param nblocks pointer to an integer containing number of nonzero
orbital blocks.
@param iblocks a set of nblocks integer pairs [a,b) defining the
range of first index to be zeroed.
@param ldaib not used
@param nvclen batch length - and the second dimension of tmp.
*/
static void
zeroorbs(real *tmp, const int *nblocks, const int (*iblocks)[2],
int ldaib, int nvclen)
{
/* DIMENSION TMP(NVCLEN,NBAST),NBLOCKS(NSYM),IBLOCKS(2,LDAIB,NSYM) */
int ibl, idx, k;
for(ibl=0; ibl<nblocks[0]; ibl++)
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
real * tmpi = tmp + idx*nvclen;
for(k=0; k<nvclen; k++) tmpi[k] = 0.0;
}
}
/** Computes the expectation value <o|dmat|o'> for a symmetric matrix
and given set of precomputed orbital values gao. Sparsity of gao as
determined with help of nblocks and iblocks is used to reduce the
computational effort.
@param dmat full square symmetric matrix
@param nbast size of dmat
@param gao orbital matrix[nbast][nvclen]. Set values are determied
by nblocks and iblocks, other values shall not be accessed.
@param nblocks number of nonzero row blocks in gao
@param iblocks ranges [a,b) of nonzero blocks in gao.
@param ldaib not used
@param tmp temporary matrix [nbast][nvclen]
@param nvclen batch length - number of columns in gao.
@param rho the vector[nvclen] where the computed expectation values
will be stored.
*/
void
getrho_blocked_lda(int nbast, const real * dmat, const real * restrict gao,
const int* nblocks, const int (*iblocks)[2],
int ldaib, real *tmp, int nvclen, real *rho)
{
/*
DIMENSION DMAT(NBAST,NBAST), GAO(NVCLEN,NBAST,*)
DIMENSION NBLOCKS(NSYM), IBLOCKS(2,LDAIB,NSYM), RHO(NVCLEN)
DIMENSION TMP(NVCLEN,NBAST)
*/
int ibl, idx, jbl, k;
/* dzero(TMP,NVCLEN*NBAST) */
zeroorbs(tmp, nblocks, iblocks, ldaib, nvclen);
/* only first symmetry */
#if USE_BLAS_IN_XC
for(ibl=0; ibl<nblocks[0]; ibl++) {
static const ergo_real ONER = 1.0;
static const ergo_real HALF = 0.5;
int cColumns, sumCols;
for(jbl=0; jbl<ibl; jbl++) {
cColumns = iblocks[jbl][1]-iblocks[jbl][0];
sumCols = iblocks[ibl][1]-iblocks[ibl][0];
mat::gemm("N", "N", &nvclen, &cColumns, &sumCols, &ONER,
gao+iblocks[ibl][0]*nvclen, &nvclen,
dmat+iblocks[jbl][0]*nbast + iblocks[ibl][0], &nbast, &ONER,
tmp + iblocks[jbl][0]*nvclen, &nvclen);
}
cColumns = iblocks[ibl][1]-iblocks[ibl][0];
sumCols = iblocks[ibl][1]-iblocks[ibl][0];
mat::symm("R", "U", &nvclen, &cColumns, &HALF,
dmat+iblocks[ibl][0]*nbast + iblocks[ibl][0], &nbast,
gao+iblocks[ibl][0]*nvclen, &nvclen, &ONER,
tmp + iblocks[ibl][0]*nvclen, &nvclen);
}
#else /* USE_BLAS_IN_XC */
int jdx;
real d;
for(ibl=0; ibl<nblocks[0]; ibl++)
/* print *,"block ", IBL,IBLOCKS(1,IBL,ISYM),IBLOCKS(2,IBL,ISYM) */
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
real * restrict tmpj;
const real * restrict gaoi = gao + idx*nvclen;
for(jbl=0; jbl<nblocks[0]; jbl++) {
int jtop = iblocks[jbl][1] > idx ? idx : iblocks[jbl][1];
for(jdx=iblocks[jbl][0]; jdx<jtop; jdx++) {
d = dmat[idx +jdx*nbast];
tmpj = tmp + jdx*nvclen;
for(k=0; k<nvclen; k++)
tmpj[k] += gaoi[k]*d;
}
}
tmpj = tmp + idx*nvclen;
d = dmat[idx +idx*nbast]*0.5;
for(k=0; k<nvclen; k++)
tmpj[k] += gaoi[k]*d;
}
#endif /* USE_BLAS_IN_XC */
memset(rho, 0, nvclen*sizeof(real));
for(ibl=0; ibl<nblocks[0]; ibl++)
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * restrict gaoi = gao + idx*nvclen;
const real * restrict tmpi = tmp + idx*nvclen;
for(k=0; k<nvclen; k++)
rho[k] += gaoi[k]*tmpi[k]*2.0;
}
}
/** Computes the expectation value <o|dmat|o'> and its derivatives for
a symmetric matrix and given set of precomputed orbital values and
their cartesian derivatives gao. Sparsity of gao as determined with
help of nblocks and iblocks is used to reduce the computational
effort.
@param dmat full square symmetric matrix
@param nbast size of dmat
@param gao orbital matrix[4][nbast][nvclen]. First block [0][][]
contains orbital values. Subsequent blocks - orbital derivatives wrt
x,y, and z coordinates. Set values are determied by nblocks and
iblocks, other values shall not be accessed.
@param nblocks number of nonzero row blocks in gao
@param iblocks ranges [a,b) of nonzero blocks in gao.
@param ldaib not used
@param tmp temporary matrix [nbast][nvclen]
@param nvclen batch length - number of columns in gao.
@param rho the vector[nvclen] where the computed expectation values
will be stored.
@param grad a vector of triples where the computed gradient values
will be stored.
*/
void
getrho_blocked_gga(int nbast, const real * dmat, const real * restrict gao,
const int* nblocks, const int (*iblocks)[2],
int ldaib, real *tmp, int nvclen,
real *rho, real (*grad)[3])
{
/*
DIMENSION DMAT(NBAST,NBAST), GAO(NVCLEN,NBAST,*)
DIMENSION NBLOCKS(NSYM), IBLOCKS(2,LDAIB,NSYM), RHO(NVCLEN)
DIMENSION TMP(NVCLEN,NBAST)
*/
int ibl, idx, jbl, k;
/* dzero(TMP,NVCLEN*NBAST) */
zeroorbs(tmp, nblocks, iblocks, ldaib, nvclen);
/* only first symmetry */
#if USE_BLAS_IN_XC == 1
for(ibl=0; ibl<nblocks[0]; ibl++)
for(jbl=0; jbl<nblocks[0]; jbl++) {
static const ergo_real ONER = 1.0;
int cColumns = iblocks[jbl][1]-iblocks[jbl][0];
int sumCols = iblocks[ibl][1]-iblocks[ibl][0];
mat::gemm("N", "N", &nvclen, &cColumns, &sumCols, &ONER,
gao+iblocks[ibl][0]*nvclen, &nvclen,
dmat+iblocks[jbl][0]*nbast + iblocks[ibl][0],
&nbast, &ONER,
tmp + iblocks[jbl][0]*nvclen, &nvclen);
}
#else /* USE_BLAS_IN_XC */
int jdx;
real d;
for(ibl=0; ibl<nblocks[0]; ibl++)
/* print *,"block ", IBL,IBLOCKS(1,IBL,ISYM),IBLOCKS(2,IBL,ISYM) */
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * restrict gaoi = gao + idx*nvclen;
for(jbl=0; jbl<nblocks[0]; jbl++) {
for(jdx=iblocks[jbl][0]; jdx<iblocks[jbl][1]; jdx++) {
real * restrict tmpj = tmp + jdx*nvclen;
d = dmat[idx +jdx*nbast];
for(k=0; k<nvclen; k++)
tmpj[k] += gaoi[k]*d;
}
}
}
#endif /* USE_BLAS_IN_XC */
memset(rho, 0, nvclen*sizeof(real));
memset(grad, 0, 3*nvclen*sizeof(real));
for(ibl=0; ibl<nblocks[0]; ibl++)
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * restrict gaoi = gao + idx*nvclen;
const real * restrict tmpi = tmp + idx*nvclen;
for(k=0; k<nvclen; k++) {
rho[k] += gaoi[k]*tmpi[k];
grad[k][0] += gaoi[k + nvclen*nbast]*tmpi[k]*2;
grad[k][1] += gaoi[k + nvclen*nbast*2]*tmpi[k]*2;
grad[k][2] += gaoi[k + nvclen*nbast*3]*tmpi[k]*2;
}
}
}
/** Computes the expectation value <o|dmat|o'> for a nonsymmetric matrix
and given set of precomputed orbital values gao. Sparsity of gao as
determined with help of nblocks and iblocks is used to reduce the
computational effort.
@param dmat full square symmetric matrix
@param nbast size of dmat
@param gao orbital matrix[nbast][nvclen]. Set values are determied
by nblocks and iblocks, other values shall not be accessed.
@param nblocks number of nonzero row blocks in gao
@param iblocks ranges [a,b) of nonzero blocks in gao.
@param ldaib not used
@param tmp temporary matrix [nbast][nvclen]
@param nvclen batch length - number of columns in gao.
@param rho the vector[nvclen] where the computed expectation values
will be stored.
*/
void
getexp_blocked_lda(int nbast, const real * dmat, const real * gao,
const int* nblocks, const int (*iblocks)[2],
int ldaib, real *tmp, int nvclen, real *rho)
{
/*
DIMENSION DMAT(NBAST,NBAST), GAO(NVCLEN,NBAST,*)
DIMENSION NBLOCKS(NSYM), IBLOCKS(2,LDAIB,NSYM), RHO(NVCLEN)
DIMENSION TMP(NVCLEN,NBAST)
*/
int ibl, idx, jbl, jdx, k;
real d;
/* dzero(TMP,NVCLEN*NBAST) */
zeroorbs(tmp, nblocks, iblocks, ldaib, nvclen);
/* only first symmetry */
for(ibl=0; ibl<nblocks[0]; ibl++)
/* print *,"block ", IBL,IBLOCKS(1,IBL,ISYM),IBLOCKS(2,IBL,ISYM) */
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * gaoi = gao + idx*nvclen;
for(jbl=0; jbl<nblocks[0]; jbl++) {
for(jdx=iblocks[jbl][0]; jdx<iblocks[jbl][1]; jdx++) {
real *tmpj = tmp + jdx*nvclen;
d = dmat[idx +jdx*nbast];
for(k=0; k<nvclen; k++)
tmpj[k] += gaoi[k]*d;
}
}
}
memset(rho, 0, nvclen*sizeof(real));
for(ibl=0; ibl<nblocks[0]; ibl++)
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * gaoi = gao + idx*nvclen;
const real * tmpi = tmp + idx*nvclen;
for(k=0; k<nvclen; k++)
rho[k] += gaoi[k]*tmpi[k];
}
}
/** Computes the expectation value <o|dmat|o'> and its derivatives for
a nonsymmetric matrix and given set of precomputed orbital values
and their cartesian derivatives gao. Sparsity of gao as determined
with help of nblocks and iblocks is used to reduce the computational
effort.
@param dmat full square symmetric matrix
@param nbast size of dmat
@param gao orbital matrix[4][nbast][nvclen]. First block [0][][]
contains orbital values. Subsequent blocks - orbital derivatives wrt
x,y, and z coordinates. Set values are determied by nblocks and
iblocks, other values shall not be accessed.
@param nblocks number of nonzero row blocks in gao
@param iblocks ranges [a,b) of nonzero blocks in gao.
@param ldaib not used
@param tmp temporary matrix [nbast][nvclen]
@param nvclen batch length - number of columns in gao.
@param rgrad a vector of quartets where the computed expectation
values and gradient values will be stored. */
void
getexp_blocked_gga(int nbast, const real * dmat, const real * gao,
const int* nblocks, const int (*iblocks)[2],
int ldaib, real *tmp, int nvclen,
real (*rgrad)[4])
{
/*
DIMENSION DMAT(NBAST,NBAST), GAO(NVCLEN,NBAST,*)
DIMENSION NBLOCKS(NSYM), IBLOCKS(2,LDAIB,NSYM), RHO(NVCLEN)
DIMENSION TMP(NVCLEN,NBAST)
*/
int ibl, idx, jbl, jdx, k;
real d;
/* dzero(TMP,NVCLEN*NBAST) */
zeroorbs(tmp, nblocks, iblocks, ldaib, nvclen);
/* only first symmetry */
for(ibl=0; ibl<nblocks[0]; ibl++)
/* print *,"block ", IBL,IBLOCKS(1,IBL,ISYM),IBLOCKS(2,IBL,ISYM) */
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * gaoi = gao + idx*nvclen;
for(jbl=0; jbl<nblocks[0]; jbl++) {
for(jdx=iblocks[jbl][0]; jdx<iblocks[jbl][1]; jdx++) {
real *tmpj = tmp + jdx*nvclen;
d = dmat[idx +jdx*nbast] + dmat[jdx +idx*nbast];
for(k=0; k<nvclen; k++)
tmpj[k] += gaoi[k]*d;
}
}
}
memset(rgrad, 0, 4*nvclen*sizeof(real));
for(ibl=0; ibl<nblocks[0]; ibl++)
for(idx=iblocks[ibl][0]; idx<iblocks[ibl][1]; idx++) {
const real * gaoi = gao + idx*nvclen;
const real * tmpi = tmp + idx*nvclen;
for(k=0; k<nvclen; k++) {
rgrad[k][0] += gaoi[k ]*tmpi[k]*0.5;
rgrad[k][1] += gaoi[k + nvclen*nbast ]*tmpi[k];
rgrad[k][2] += gaoi[k + nvclen*nbast*2]*tmpi[k];
rgrad[k][3] += gaoi[k + nvclen*nbast*3]*tmpi[k];
}
}
}
|