1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "basis_func_pair_list_1el.h"
#include "basis_func_extent_1el.h"
#include "output.h"
#include "pi.h"
#include "box_system.h"
#include "utilities.h"
#include "integrals_general.h"
int
get_basis_func_pair_list_1el(const BasisInfoStruct & basisInfo,
ergo_real threshold,
ergo_real maxCharge,
basis_func_index_pair_struct_1el* result_basisFuncPairList,
int resultMaxCount)
{
int n = basisInfo.noOfBasisFuncs;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "get_basis_func_pair_list_1el, n = %6i", n);
Util::TimeMeter timeMeter;
// compute extent for all basis functions
ergo_real* basisFuncExtentList = new ergo_real[n];
if(compute_extent_for_all_basis_funcs_1el(basisInfo,
basisFuncExtentList,
maxCharge,
threshold) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_extent_for_all_basis_funcs_1el");
return -1;
}
ergo_real maxExtent = 0;
for(int i = 0; i < n; i++)
{
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
// Create box system for basisInfo.
box_item_struct* itemList = new box_item_struct[n];
for(int i = 0; i < n; i++)
{
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = basisInfo.basisFuncList[i].centerCoords[j];
itemList[i].originalIndex = i;
}
ergo_real toplevelBoxSize = 7.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(itemList,
n,
toplevelBoxSize) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in create_box_system.");
return -1;
}
int* orgIndexList = new int [n];
int count = 0;
for(int i = 0; i < n; i++)
{
// Now, instead of looping again over all n basis functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = basisInfo.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(itemList, coords, maxDistance, orgIndexList);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++)
{
int j = orgIndexList[jRelevant];
if(j < i)
continue;
// Now we are concerned with basis functions i and j.
// If they are far enough apart, we can skip this pair.
ergo_real dx = basisInfo.basisFuncList[i].centerCoords[0] - basisInfo.basisFuncList[j].centerCoords[0];
ergo_real dy = basisInfo.basisFuncList[i].centerCoords[1] - basisInfo.basisFuncList[j].centerCoords[1];
ergo_real dz = basisInfo.basisFuncList[i].centerCoords[2] - basisInfo.basisFuncList[j].centerCoords[2];
ergo_real distance = std::sqrt(dx*dx + dy*dy + dz*dz);
if(distance > basisFuncExtentList[i] + basisFuncExtentList[j])
continue;
// There may be some overlap between these two basis functions.
// However, the extent check is rather rough.
// To check more carefully, compute product explicitly.
int currProductLargeEnough = 0;
const int maxCountProduct = POLY_PRODUCT_MAX_DISTRS;
DistributionSpecStruct psi_list[maxCountProduct];
/* form product of basisfuncs i and j, store product in psi_list */
int n_psi = get_product_simple_primitives(basisInfo, i,
basisInfo, j,
psi_list,
maxCountProduct,
0);
if(n_psi < 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives");
return -1;
}
for(int k = 0; k < n_psi; k++)
{
// Check if this distr can give contribution larger than threshold.
ergo_real estimatedMaxContrib = std::fabs(2 * pi * maxCharge * psi_list[k].coeff / psi_list[k].exponent);
if(estimatedMaxContrib > threshold)
{
// This product distr is large enough.
currProductLargeEnough = 1;
break;
} // END IF above threshold
} // END FOR k
if(currProductLargeEnough == 1)
{
// Include this pair in the list
if(result_basisFuncPairList != NULL)
{
if(count >= resultMaxCount)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_basis_func_pair_list: (count >= resultMaxCount)");
return -1;
}
result_basisFuncPairList[count].index_1 = i;
result_basisFuncPairList[count].index_2 = j;
}
count++;
} // END IF include this pair in the list
} // END FOR jRelevant
} // END FOR i
delete [] basisFuncExtentList;
delete [] itemList;
delete [] orgIndexList;
timeMeter.print(LOG_AREA_INTEGRALS, "get_basis_func_pair_list_1el");
return count;
}
|