1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#ifndef MAT_ALLOCATORMANAGER_HEADER
#define MAT_ALLOCATORMANAGER_HEADER
#include <stdexcept>
#include <list>
#include <string>
#include <sstream>
#include <iomanip> /* For setprecision */
#include <iostream>
#include <cstdlib>
#include "Allocator.h"
namespace mat {
template<class Treal>
class AllocatorManager
{
public:
void init(size_t noOfRealsPerBuffer_,
size_t noOfBuffers_) {
if(noOfRealsPerBuffer != 0) {
// This means that the AllocatorManager has already been initialized.
// We allow this if the parameters are the same.
if(noOfRealsPerBuffer_ != noOfRealsPerBuffer || noOfBuffers_ != noOfBuffers)
throw std::runtime_error("Error in AllocatorManager: "
"attempt to re-initialize with different parameters.");
}
if(noOfRealsPerBuffer_ <= 0 || noOfBuffers_ <= 0)
throw std::runtime_error("Error in AllocatorManager: bad input to init().");
noOfRealsPerBuffer = noOfRealsPerBuffer_;
noOfBuffers = noOfBuffers_;
}
static AllocatorManager & instance();
Treal* alloc(size_t n) {
if(n != noOfRealsPerBuffer)
return new Treal[n];
pthread_mutex_lock(&mutex);
// Go through list to see if there is any free space.
typename std::list< Allocator<Treal>* >::iterator it = list.begin();
while(it != list.end()) {
if(!(*it)->isFull()) {
// OK, found allocator that is not full. Use it.
Treal* ptr = (*it)->alloc();
pthread_mutex_unlock(&mutex);
return ptr;
}
it++;
}
// We did not find any non-full existing allocator. Need to add a new one.
/* ELIAS NOTE 2016-06-30: Important to catch exceptions here so
that we unlock the mutex in case allocation fails, otherwise
program may hang later when trying to lock the mutex e.g. to
delete something after catching the exception elsewhere in the
code. This happened with some test runs on Triolith and it was
very annoying, took a long time to figure out why the runs
hanged. */
Allocator<Treal>* newAllocator;
try {
newAllocator = new Allocator<Treal>(noOfRealsPerBuffer,
noOfBuffers);
}
catch (const std::bad_alloc & e) {
size_t noOfBytesPerAllocator = noOfBuffers * noOfRealsPerBuffer * sizeof(Treal);
size_t totNoOfBytesAllocated = list.size() * noOfBytesPerAllocator;
std::cerr << "Error in AllocatorManager::alloc(): std::bad_alloc exception caught. Usage before error: list.size() = " << list.size()
<< " --> " << (double)totNoOfBytesAllocated/1000000000 << " GB used. peakListSize = " << peakListSize << std::endl;
pthread_mutex_unlock(&mutex);
throw e;
}
catch(...) {
std::cerr << "Error in AllocatorManager::alloc(): exception caught (but not std::bad_alloc!?!)." << std::endl;
pthread_mutex_unlock(&mutex);
throw std::runtime_error("Error in AllocatorManager::alloc(): exception caught (but not std::bad_alloc!?!).");
}
list.push_back(newAllocator);
if(list.size() > peakListSize)
peakListSize = list.size();
Treal* ptr = newAllocator->alloc();
pthread_mutex_unlock(&mutex);
return ptr;
}
void free(Treal* ptr) {
pthread_mutex_lock(&mutex);
// Go through list to see if this ptr belongs to any allocator.
typename std::list< Allocator<Treal>* >::iterator it = list.begin();
while(it != list.end()) {
if((*it)->ownsPtr(ptr)) {
(*it)->free(ptr);
// Now check if allocator is empty; in that case we want to remove it.
if((*it)->isEmpty()) {
delete *it;
list.erase(it);
}
pthread_mutex_unlock(&mutex);
return;
}
it++;
}
delete [] ptr;
pthread_mutex_unlock(&mutex);
}
std::string getStatistics() {
size_t noOfBytesPerAllocator = noOfBuffers * noOfRealsPerBuffer * sizeof(Treal);
size_t totNoOfBytesAllocated = list.size() * noOfBytesPerAllocator;
size_t peakNoOfBytesAllocated = peakListSize * noOfBytesPerAllocator;
size_t totNoOfBytesUsed = 0;
// Go through list to compute totNoOfBytesUsed
typename std::list< Allocator<Treal>* >::iterator it = list.begin();
while(it != list.end()) {
totNoOfBytesUsed += (size_t)((*it)->getNoOfOccupiedSlots()) * noOfRealsPerBuffer * sizeof(Treal);
it++;
}
std::stringstream ss;
ss << "AllocatorManager statistics: ";
ss << std::setprecision(3)
<< " noOfRealsPerBuffer: " << noOfRealsPerBuffer
<< " noOfBuffers: " << noOfBuffers
<< " list.size(): " << list.size()
<< ". "
<< "Allocated: " << (double)totNoOfBytesAllocated / 1e9 << " GB, "
<< "Used: " << (double)totNoOfBytesUsed / 1e9 << " GB, "
<< "Peak alloc: " << (double)peakNoOfBytesAllocated/ 1e9 << " GB.";
return ss.str();
}
private:
AllocatorManager() : noOfRealsPerBuffer(0), noOfBuffers(0), peakListSize(0) {
pthread_mutex_init(&mutex, NULL);
}
~AllocatorManager() {
if(!list.empty()) {
std::cerr << "Error in AllocatorManager destructor: not empty." << std::endl;
abort();
}
// Go through list to free any allocators that are left.
typename std::list< Allocator<Treal>* >::iterator it = list.begin();
while(it != list.end()) {
delete *it;
it++;
}
}
std::list< Allocator<Treal>* > list;
size_t noOfRealsPerBuffer;
size_t noOfBuffers;
pthread_mutex_t mutex;
size_t peakListSize;
}; // end class AllocatorManager
} /* end namespace mat */
#endif
|