File: test_LanczosSeveralLargestEig.cc

package info (click to toggle)
ergo 3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 17,044 kB
  • ctags: 6,813
  • sloc: cpp: 91,488; ansic: 15,728; sh: 6,416; makefile: 1,287; yacc: 123; lex: 108
file content (220 lines) | stat: -rw-r--r-- 6,777 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* Ergo, version 3.5, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Kohn−Sham Density Functional Theory Electronic Structure Calculations 
 * with Linearly Scaling Computational Time and Memory Usage,
 * Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
 * J. Chem. Theory Comput. 7, 340 (2011),
 * <http://dx.doi.org/10.1021/ct100611z>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
#include <fstream>  /* For ifstream */
#include <iomanip> /* For setprecision in fstream */
#include <iostream>
#include <cmath>
#include <stdio.h> /* For FILE */
#include "SizesAndBlocks.h"
#include "Matrix.h"
#include "Vector.h"
#include "MatrixSymmetric.h"
#include "MatrixTriangular.h"
#include "MatrixGeneral.h"
#include "VectorGeneral.h"
#include "mat_gblas.h"
#include "Lanczos.h"
#include "LanczosSeveralLargestEig.h"

using namespace mat;


typedef double real;

// define matrix and vector hierarchy 
typedef Matrix<real, real> Mat_1;
typedef Matrix<real, Mat_1> Mat_2;
typedef Matrix<real, Mat_2> Mat_3;
typedef Vector<real, real > Vec_1;
typedef Vector<real, Vec_1> Vec_2;
typedef Vector<real, Vec_2> Vec_3;
  
typedef Mat_3 matri;
typedef Vec_3 vect;
typedef MatrixSymmetric<real, matri> symmMatrix;
typedef MatrixTriangular<real, matri> triangMatrix;
typedef MatrixGeneral<real, matri> normalMatrix;
typedef VectorGeneral<real, vect> normalVector;


int main()
{

#ifdef _OPENMP	
  int defThreads;
  const char *env = getenv("OMP_NUM_THREADS");
  if ( !(env && (defThreads=atoi(env)) > 0) ) {
    defThreads = 1;
  }
  
  mat::Params::setNProcs(defThreads);
  mat::Params::setMatrixParallelLevel(2);
  std::cout<<"OpenMP is used, number of threads set to "
	   <<mat::Params::getNProcs()<<". Matrix parallel level: "
	   <<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif

  try
    {
      typedef arn::LanczosSeveralLargestEig<real, symmMatrix, normalVector> myLanczosType;
      real epsilon = template_blas_sqrt(mat::getRelPrecision<real>());
  

  /********** Initialization of SizesAndBlocks                            */
  int size = 51; /* Use weird size to find more bugs. */
  int nlevels = 3;
  std::vector<int> blockSizes(nlevels);
  blockSizes[nlevels - 1] = 1; // should always be one
#if 1
  blockSizes[nlevels - 2] = 1; // lowest level blocksize
  blockSizes[nlevels - 3] = 5;
#else
  for (int ind = nlevels - 2; ind >= 0; ind--)
    blockSizes[ind] = blockSizes[ind + 1] * 10;
#endif

  std::cout << "Running tests with blocksize vector: ";
  for (int ind = 0; ind < nlevels; ind++)
    std::cout << blockSizes[ind] << "  ";
  std::cout << std::endl;

  SizesAndBlocks rows(blockSizes, size);
  SizesAndBlocks cols(blockSizes, size);
    
  real ONEreal = 1.0;

  symmMatrix syA;
  syA.resetSizesAndBlocks(rows,cols);
  syA.randomZeroStructure(0.3);
  //syA.random();
  // std::vector<int> rowsA;
  // std::vector<int> colsA;
  // std::vector<real> valsA;
  // syA.get_all_values(rowsA, colsA, valsA);
  // std::cout << "Matrix:" << std::endl;
  // std::cout << rowsA.size() << std::endl;
  // for(int i = 0; i < rowsA.size(); ++i)
  //   std::cout << rowsA[i] << " " << colsA[i] << " " << valsA[i] << std::endl;

  normalVector x;
  x.resetSizesAndBlocks(rows);
  x.rand();
  int maxit = 400;

  myLanczosType lan(syA, x, 5, maxit);
  real lanEpsilon = epsilon * 1e-1;
  lan.setAbsTol( lanEpsilon );
  lan.run();
  normalVector eigVec;
  real eigVal;
  real accuracy;

  lan.get_ith_eigenpair(1, eigVal, eigVec, accuracy);
  normalVector resVec(eigVec); // residual
  resVec *= eigVal;
  resVec += -ONEreal * syA * eigVec;
  std::cout<<"\nLanczos several largest magnitude test : \n" 
	   << "FIRST EIGENPAIR: \n"
	   << "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
	   <<"\n Requested accuracy: "
	   <<std::setprecision(10)<<std::setw(15)
	   <<lanEpsilon
	   <<"\n Indicated Error:    "
	   <<std::setprecision(10)<<std::setw(15)
	   <<accuracy
	   <<"\n Residual:       "
 	   <<std::setprecision(10)<<std::setw(15)
	   <<resVec.eucl() << std::endl;
  if (accuracy < lanEpsilon && 
      (resVec.eucl() < accuracy || 
       resVec.eucl() < mat::getRelPrecision<real>() * 100))
    std::cout<<"   OK" <<std::endl;
  else {
    std::cout<<"   ERROR" <<std::endl;
    std::exit(1);
  }    


  lan.get_ith_eigenpair(2, eigVal, eigVec, accuracy);
  resVec = eigVec; // residual
  resVec *= eigVal;
  resVec += -ONEreal * syA * eigVec;
  std::cout<< "SECOND EIGENPAIR: \n"
	   << "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
	   <<"\n Requested accuracy: "
	   <<std::setprecision(10)<<std::setw(15)
	   <<lanEpsilon
	   <<"\n Indicated Error:    "
	   <<std::setprecision(10)<<std::setw(15)
	   <<accuracy
	   <<"\n Residual:       "
	   <<std::setprecision(10)<<std::setw(15)
	   <<resVec.eucl() << std::endl;
  if (accuracy < lanEpsilon && 
      (resVec.eucl() < accuracy || 
       resVec.eucl() < mat::getRelPrecision<real>() * 100))
    std::cout<<"   OK" <<std::endl;
  else {
    std::cout<<"   ERROR" <<std::endl;
    std::exit(1);
  }    


  lan.get_ith_eigenpair(5, eigVal, eigVec, accuracy);
  resVec = eigVec; // residual
  resVec *= eigVal;
  resVec += -ONEreal * syA * eigVec;
  std::cout<< "FIFTH EIGENPAIR: \n"
	   << "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
	   <<"\n Requested accuracy: "
	   <<std::setprecision(10)<<std::setw(15)
	   <<lanEpsilon
	   <<"\n Indicated Error:    "
	   <<std::setprecision(10)<<std::setw(15)
	   <<accuracy
	   <<"\n Residual:       "
	   <<std::setprecision(10)<<std::setw(15)
	   <<resVec.eucl() << std::endl;
  if (accuracy < lanEpsilon && 
      (resVec.eucl() < accuracy || 
       resVec.eucl() < mat::getRelPrecision<real>() * 100))
    std::cout<<"   OK" <<std::endl;
  else {
    std::cout<<"   ERROR" <<std::endl;
    std::exit(1);
  }    

}
  catch (std::exception & e) {
  std::cout << "Exception caught: "<<e.what() << std::endl;
  std::exit(1);
}

    return 0;

}