1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
#include <fstream> /* For ifstream */
#include <iomanip> /* For setprecision in fstream */
#include <iostream>
#include <cmath>
#include <stdio.h> /* For FILE */
#include "SizesAndBlocks.h"
#include "Matrix.h"
#include "Vector.h"
#include "MatrixSymmetric.h"
#include "MatrixTriangular.h"
#include "MatrixGeneral.h"
#include "VectorGeneral.h"
#include "mat_gblas.h"
#include "Lanczos.h"
#include "LanczosSeveralLargestEig.h"
using namespace mat;
typedef double real;
// define matrix and vector hierarchy
typedef Matrix<real, real> Mat_1;
typedef Matrix<real, Mat_1> Mat_2;
typedef Matrix<real, Mat_2> Mat_3;
typedef Vector<real, real > Vec_1;
typedef Vector<real, Vec_1> Vec_2;
typedef Vector<real, Vec_2> Vec_3;
typedef Mat_3 matri;
typedef Vec_3 vect;
typedef MatrixSymmetric<real, matri> symmMatrix;
typedef MatrixTriangular<real, matri> triangMatrix;
typedef MatrixGeneral<real, matri> normalMatrix;
typedef VectorGeneral<real, vect> normalVector;
int main()
{
#ifdef _OPENMP
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) ) {
defThreads = 1;
}
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(2);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
try
{
typedef arn::LanczosSeveralLargestEig<real, symmMatrix, normalVector> myLanczosType;
real epsilon = template_blas_sqrt(mat::getRelPrecision<real>());
/********** Initialization of SizesAndBlocks */
int size = 51; /* Use weird size to find more bugs. */
int nlevels = 3;
std::vector<int> blockSizes(nlevels);
blockSizes[nlevels - 1] = 1; // should always be one
#if 1
blockSizes[nlevels - 2] = 1; // lowest level blocksize
blockSizes[nlevels - 3] = 5;
#else
for (int ind = nlevels - 2; ind >= 0; ind--)
blockSizes[ind] = blockSizes[ind + 1] * 10;
#endif
std::cout << "Running tests with blocksize vector: ";
for (int ind = 0; ind < nlevels; ind++)
std::cout << blockSizes[ind] << " ";
std::cout << std::endl;
SizesAndBlocks rows(blockSizes, size);
SizesAndBlocks cols(blockSizes, size);
real ONEreal = 1.0;
symmMatrix syA;
syA.resetSizesAndBlocks(rows,cols);
syA.randomZeroStructure(0.3);
//syA.random();
// std::vector<int> rowsA;
// std::vector<int> colsA;
// std::vector<real> valsA;
// syA.get_all_values(rowsA, colsA, valsA);
// std::cout << "Matrix:" << std::endl;
// std::cout << rowsA.size() << std::endl;
// for(int i = 0; i < rowsA.size(); ++i)
// std::cout << rowsA[i] << " " << colsA[i] << " " << valsA[i] << std::endl;
normalVector x;
x.resetSizesAndBlocks(rows);
x.rand();
int maxit = 400;
myLanczosType lan(syA, x, 5, maxit);
real lanEpsilon = epsilon * 1e-1;
lan.setAbsTol( lanEpsilon );
lan.run();
normalVector eigVec;
real eigVal;
real accuracy;
lan.get_ith_eigenpair(1, eigVal, eigVec, accuracy);
normalVector resVec(eigVec); // residual
resVec *= eigVal;
resVec += -ONEreal * syA * eigVec;
std::cout<<"\nLanczos several largest magnitude test : \n"
<< "FIRST EIGENPAIR: \n"
<< "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
<<"\n Requested accuracy: "
<<std::setprecision(10)<<std::setw(15)
<<lanEpsilon
<<"\n Indicated Error: "
<<std::setprecision(10)<<std::setw(15)
<<accuracy
<<"\n Residual: "
<<std::setprecision(10)<<std::setw(15)
<<resVec.eucl() << std::endl;
if (accuracy < lanEpsilon &&
(resVec.eucl() < accuracy ||
resVec.eucl() < mat::getRelPrecision<real>() * 100))
std::cout<<" OK" <<std::endl;
else {
std::cout<<" ERROR" <<std::endl;
std::exit(1);
}
lan.get_ith_eigenpair(2, eigVal, eigVec, accuracy);
resVec = eigVec; // residual
resVec *= eigVal;
resVec += -ONEreal * syA * eigVec;
std::cout<< "SECOND EIGENPAIR: \n"
<< "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
<<"\n Requested accuracy: "
<<std::setprecision(10)<<std::setw(15)
<<lanEpsilon
<<"\n Indicated Error: "
<<std::setprecision(10)<<std::setw(15)
<<accuracy
<<"\n Residual: "
<<std::setprecision(10)<<std::setw(15)
<<resVec.eucl() << std::endl;
if (accuracy < lanEpsilon &&
(resVec.eucl() < accuracy ||
resVec.eucl() < mat::getRelPrecision<real>() * 100))
std::cout<<" OK" <<std::endl;
else {
std::cout<<" ERROR" <<std::endl;
std::exit(1);
}
lan.get_ith_eigenpair(5, eigVal, eigVec, accuracy);
resVec = eigVec; // residual
resVec *= eigVal;
resVec += -ONEreal * syA * eigVec;
std::cout<< "FIFTH EIGENPAIR: \n"
<< "Eigenvalue: " << std::setprecision(12) << eigVal <<std::setw(15)
<<"\n Requested accuracy: "
<<std::setprecision(10)<<std::setw(15)
<<lanEpsilon
<<"\n Indicated Error: "
<<std::setprecision(10)<<std::setw(15)
<<accuracy
<<"\n Residual: "
<<std::setprecision(10)<<std::setw(15)
<<resVec.eucl() << std::endl;
if (accuracy < lanEpsilon &&
(resVec.eucl() < accuracy ||
resVec.eucl() < mat::getRelPrecision<real>() * 100))
std::cout<<" OK" <<std::endl;
else {
std::cout<<" ERROR" <<std::endl;
std::exit(1);
}
}
catch (std::exception & e) {
std::cout << "Exception caught: "<<e.what() << std::endl;
std::exit(1);
}
return 0;
}
|