1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** Interface from ERGO to TD-DFT routines. */
#include <string.h>
#include "dft_common.h"
#include "integrator.h"
#include "integrals_1el_kinetic.h"
#include "integrals_1el_potential.h"
#include "integrals_2el_explicit.h"
#include "operator_matrix.h"
#include "tddft.h"
#include "grid_matrix.h"
BEGIN_NAMESPACE(TDDFT);
static const ergo_real THRESHOLD = 1e-15;
/** Writes specified quadratic matrix to specified file in matlab
format. Returns 0 on success, -1 on failure. */
int
writeMatlab(FILE *f, const ergo_real *mat, int n, const char *matName)
{
if(fprintf(f, "%s = [\n", matName) < 1) return -1;
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++)
if(fprintf(f, " %lg", (double)mat[j + i*n]) < 1) return -1;
if(fputs(";\n", f) == EOF) return -1;
}
if(fputs("];\n", f) == EOF) return -1;
return 0;
}
#if 0
/** Writes specified quadratic matrix to specified file in binary
format. Returns 0 on success, other number on failure. */
static int
writeBinary(FILE *f, const ergo_real *mat, int n)
{
return fwrite(mat, sizeof(ergo_real), n*n, f) - n*n;
}
#endif
/** Saves one-electron part of the KS matrix to given file. */
int
savePotential(const Molecule& m, const BasisInfoStruct& bis,
const IntegralInfo& ii, FILE *f)
{
int retval;
int n = bis.noOfBasisFuncs;
ergo_real *mat= new ergo_real[n*n];
memset(mat, 0, n*n*sizeof(ergo_real));
int res = compute_V_matrix_full(bis, ii, m.getNoOfAtoms(),
m.getAtomListPtr(),
THRESHOLD, mat);
if(res != 0)
throw "Error in tddft savePotential, in compute_V_matrix_full.";
/* Save matrix here. */
retval = writeMatlab(f, mat, n, "potential");
delete []mat;
return retval;
}
/** Saves the kinetic energy matrix. */
int
saveKinetic(const BasisInfoStruct& bis, FILE *f)
{
int retval;
int n = bis.noOfBasisFuncs;
ergo_real *mat= new ergo_real[n*n];
memset(mat, 0, n*n*sizeof(ergo_real));
int res = compute_T_matrix_full(bis, THRESHOLD, mat);
if(res != 0)
throw "Error in tddft saveKinetic, in compute_T_matrix_full.";
/* Save matrix here. */
retval = writeMatlab(f, mat, n, "kinetic");
delete []mat;
return retval;
}
/** Saves the overlap matrix. */
int
saveOverlap(const BasisInfoStruct& bis, FILE *f)
{
int retval = -1;
unsigned n = bis.noOfBasisFuncs;
ergo_real *mat= new ergo_real[n*n];
if( (retval = compute_overlap_matrix(bis, bis, mat)) == 0) {
retval = writeMatlab(f, mat, n, "overlap");
}
delete []mat;
return retval;
}
/** Saves the dipole matrix to specified file. */
int
saveDipole(const BasisInfoStruct& bis, FILE *f)
{
int comp;
unsigned n = bis.noOfBasisFuncs;
ergo_real *mat= new ergo_real[n*n];
for(comp=0; comp<3; comp++) {
int d[3];
d[0] = d[1] = d[2] = 0;
d[comp] = 1;
if(compute_operator_matrix_full(bis, bis, d[0], d[1], d[2], mat))
break;
char matName[200];
sprintf(matName, "dipole(1:%d,1:%d,%d)", n, n, comp+1);
if(writeMatlab(f, mat, n, matName) != 0)
break;
}
delete []mat;
return comp == 3 ? 0 : -1;
}
int
saveCoulomb(const BasisInfoStruct& bis,
const IntegralInfo& ii, FILE *f)
{
unsigned n = bis.noOfBasisFuncs;
unsigned p, q, r, s;
ergo_real *mat = new ergo_real[n*n];
for(p = 0; p < n; p++)
for(q = 0; q < n; q++) {
for(r = 0; r < n; r++)
for(s = 0; s < n; s++)
mat[s + r*n] = do_2e_integral(p, q, r, s,
bis, ii);
char matName[200];
sprintf(matName, "g(1:%d,1:%d,%d,%d)", n, n, p+1, q+1);
if(writeMatlab(f, mat, n, matName) != 0) {
delete []mat;
return -1;
}
}
delete []mat;
return 0;
}
/* =================================================================== */
/* Exchange-correlation section. */
/* Start from LDA type-functional handling... */
static void
hessianCb(DftIntegratorBl* grid, real *tmp,
int bllen, int blstart, int blend,
void* cb_data)
{
int p, q, r, s, k;
ergo_real *hessian = (ergo_real*)cb_data;
FunDensProp dp = { 0 };
for(k=blstart; k<blend; k++) {
SecondDrv vxc;
real weight = grid->weight[grid->curr_point+k];
dp.rhoa = dp.rhob = 0.5*grid->r.rho[k];
dftpot1_(&vxc, &weight, &dp, &ZEROI);
tmp[k] = vxc.fRR*2;
}
static const int SYMMETRY = 0;
const ergo_real *aos = grid->atv;
int n = grid->nbast;
int (*const blocks)[2] = BASBLOCK(grid,SYMMETRY);
int blCnt = grid->bas_bl_cnt[SYMMETRY];
for(int pBl=0; pBl<blCnt; pBl++)
for(p=blocks[pBl][0]; p<blocks[pBl][1]; p++) {
const ergo_real *pOrbs = aos + p*bllen;
for(int qBl=0; qBl<blCnt; qBl++)
for(q=blocks[qBl][0]; q<blocks[qBl][1]; q++) {
const ergo_real *qOrbs = aos + q*bllen;
for(int rBl=0; rBl<blCnt; rBl++)
for(r=blocks[rBl][0]; r<blocks[rBl][1]; r++) {
const ergo_real *rOrbs = aos + r*bllen;
for(int sBl=0; sBl<blCnt; sBl++)
for(s=blocks[sBl][0]; s<blocks[sBl][1]; s++) {
const ergo_real *sOrbs = aos + s*bllen;
ergo_real *hessianPQRS =
hessian + s + n*(r + n*(q + n*p));
for(k=blstart; k<blend; k++)
*hessianPQRS +=
pOrbs[k]*qOrbs[k]*rOrbs[k]*sOrbs[k]*tmp[k];
}
}
}
}
}
int saveXC(const Molecule& molecule, const BasisInfoStruct& bis,
const ergo_real* dMat, FILE *f)
{
int n = bis.noOfBasisFuncs;
ergo_real *hessian = new ergo_real[n*n*n*n];
int ret = 0;
Dft::GridParams gss;
Dft::FullMatrix density(dMat, n);
const Dft::FullMatrix *densPtr = &density;
memset(hessian, 0, n*n*n*n*sizeof(ergo_real));
ergo_real nElectrons =
Dft::integrate(1, &densPtr, bis, molecule, gss, 1, hessianCb, hessian);
fprintf(stderr,
"Hessian integration got %lf electrons in ground state density\n",
(double)nElectrons);
for(int p=0; p<n; p++)
for(int q=0; q<n; q++) {
char matName[200];
sprintf(matName, "xc(1:%d,1:%d,%d,%d)", n, n, p+1, q+1);
if(writeMatlab(f, hessian + n*n*(p + n*q), n, matName) != 0) {
ret = -1;
break;
}
}
delete []hessian;
return ret;
}
END_NAMESPACE(TDDFT);
|