1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file explicit_integral_test.cc Tests the explicit computation of
2-electron integrals by moving basis functions by small distances
and verifying that the computed 2-el integrals vary smoothly. */
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include <vector>
#include "integrals_2el_explicit.h"
int try_integral_diffs(const IntegralInfo & integralInfo, ergo_real h) {
Molecule m;
int nx = 2;
int ny = 1;
int nz = 1;
const ergo_real space = 8.8;
int atomCount = 0;
for(int ix = 0; ix < nx; ix++)
for(int iy = 0; iy < ny; iy++)
for(int iz = 0; iz < nz; iz++)
{
ergo_real x = ix*space + 0.4*std::cos((ix+iy+iz)*0.2+0.0)*space;
ergo_real y = iy*space + 0.4*std::cos((ix+iy+iz)*0.2+0.3)*space;
ergo_real z = iz*space + 0.4*std::cos((ix+iy+iz)*0.2+0.6)*space;
/* Use a mix of charges: H, C, Zn.
It is good to have some Zn there so we check also usage
of basis functions of f type. */
int charge = 1;
if(atomCount%3 == 0)
charge = 6;
// if(atomCount%9 == 0)
// charge = 30;
m.addAtom(charge, x, y, z);
atomCount++;
}
ergo_real moleculeBaseCoord = m.getAtom(0).coords[0];
ergo_real machine_epsilon = std::numeric_limits<ergo_real>::epsilon();
// OK, now we have a molecule. Now do a loop where we move one atom
// by a small distance and save resulting 2-el integrals for each
// case.
const int noOfCases = 55;
std::vector< std::vector< std::vector< std::vector< std::vector<ergo_real> > > > > integralList(noOfCases);
int n = 0; // Will be set later.
for(int caseIdx = 0; caseIdx < noOfCases; caseIdx++) {
// Move first atom by small distance in x direction.
Atom atom = m.getAtom(0);
atom.coords[0] = moleculeBaseCoord + caseIdx * h;
m.replaceAtom(0, atom);
// New scope here so that the BasisInfoStruct pointer is freed each time.
{
BasisInfoStruct bis;
if(bis.addBasisfuncsForMolecule(m, ERGO_SPREFIX "/basis/3-21G",
0, NULL, integralInfo, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
return -1;
}
// OK, now we have a basis set for the current version of the
// molecule. Now compute integrals.
n = bis.noOfBasisFuncs;
integralList[caseIdx].resize(n);
for(int i = 0; i < n; i++) {
integralList[caseIdx][i].resize(n);
for(int j = i; j < n; j++) {
integralList[caseIdx][i][j].resize(n);
for(int k = 0; k < n; k++) {
integralList[caseIdx][i][j][k].resize(n);
for(int l = k; l < n; l++) {
integralList[caseIdx][i][j][k][l] = do_2e_integral(i, k, l, j, bis, integralInfo);
}
}
}
}
} // End of scope for temporary BasisInfoStruct
} // END FOR caseIdx
// OK, now we have integrals computed for all cases. Now check if
// each integral value varies smoothly.
int count = 0;
for(int i = 0; i < n; i++)
for(int j = i; j < n; j++)
for(int k = 0; k < n; k++)
for(int l = k; l < n; l++) {
// Now we are interested in the integral (ij|kl). First
// check if this integral values seems to be approximately
// linearly dependent on the modufied atomic coordinate.
ergo_real totDiff = integralList[noOfCases-1][i][j][k][l] - integralList[0][i][j][k][l];
ergo_real halfDiff = integralList[noOfCases/2][i][j][k][l] - integralList[0][i][j][k][l];
if(halfDiff != 0 && std::fabs(totDiff) > machine_epsilon) {
ergo_real kvot = totDiff / halfDiff;
// Now if kvot is approximately 2 we think this integral behaves linearly.
if(kvot > 1.95 && kvot < 2.05) {
count++;
for(int caseIdx = 1; caseIdx < noOfCases; caseIdx++) {
ergo_real diff = integralList[caseIdx][i][j][k][l] - integralList[caseIdx-1][i][j][k][l];
ergo_real expectedDiff = totDiff / (noOfCases-1);
if(diff/expectedDiff < 0.9 || diff/expectedDiff > 1.1) {
printf("Error for integral i j k l : %d %d %d %d, expectedDiff = %9.5g, diff = %9.5g\n",
i, j, k, l, (double)expectedDiff, (double)diff);
return -1;
} // END IF
} // END FOR caseIdx
} // END IF
} // END IF (halfDiff != 0)
} // END FOR i j k l
unlink("ergoscf.out");
printf("try_integral_diffs finished OK, count = %d.\n", count);
if(count == 0)
exit(0);
return 0;
}
int main(int argc, char *argv[]) {
IntegralInfo integralInfo(true);
integralInfo.init();
ergo_real machine_epsilon = std::numeric_limits<ergo_real>::epsilon();
ergo_real h = 10000*machine_epsilon;
printf("machine_epsilon = %9.5g, using h = %9.5g\n", (double)machine_epsilon, (double)h);
if(try_integral_diffs(integralInfo, h) != 0)
return -1;
return 0;
}
|