1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* Ergo, version 3.5, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2016 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* KohnâSham Density Functional Theory Electronic Structure Calculations
* with Linearly Scaling Computational Time and Memory Usage,
* Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
* J. Chem. Theory Comput. 7, 340 (2011),
* <http://dx.doi.org/10.1021/ct100611z>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file jmat_extrapolate_test.cc Tests the error extrapolation scheme
for the Coulomb matrix. */
#include <stdio.h>
#include <unistd.h>
#include <memory>
#include <limits>
#include <vector>
#include "scf_utils.h"
#include "matrix_utilities.h"
#include "mat_acc_extrapolate.h"
#include "integral_matrix_wrappers.h"
class Jworkertest
{
public:
Jworkertest(const symmMatrix & D_,
const IntegralInfo & integralInfo_,
const BasisInfoStruct & basisInfo_,
const JK::Params & J_K_params_,
std::vector<int> const & permutationHML_);
void ComputeMatrix(ergo_real param,
symmMatrix & result) const;
private:
const symmMatrix & D;
const IntegralInfo & integralInfo;
const BasisInfoStruct & basisInfo;
JK::Params J_K_params;
std::vector<int> const & permutationHML;
};
Jworkertest::Jworkertest(const symmMatrix & D_,
const IntegralInfo & integralInfo_,
const BasisInfoStruct & basisInfo_,
const JK::Params & J_K_params_,
std::vector<int> const & permutationHML_) :
D(D_),
integralInfo(integralInfo_),
basisInfo(basisInfo_),
permutationHML(permutationHML_)
{
J_K_params = J_K_params_;
}
void Jworkertest::ComputeMatrix(ergo_real param,
symmMatrix & result) const
{
JK::Params J_K_params_tmp = J_K_params;
J_K_params_tmp.threshold_J = param;
if(compute_J_by_boxes_sparse(basisInfo,
integralInfo,
J_K_params_tmp,
result,
D,
permutationHML) != 0)
throw "Jworkertest::ComputeMatrix: error in compute_J_by_boxes_sparse";
}
int main(int argc, char *argv[])
{
#ifdef _OPENMP
int defThreads;
const char *env = getenv("OMP_NUM_THREADS");
if ( !(env && (defThreads=atoi(env)) > 0) ) {
defThreads = 1;
}
mat::Params::setNProcs(defThreads);
mat::Params::setMatrixParallelLevel(2);
std::cout<<"OpenMP is used, number of threads set to "
<<mat::Params::getNProcs()<<". Matrix parallel level: "
<<mat::Params::getMatrixParallelLevel()<<"."<<std::endl;
#endif
IntegralInfo biBasic(true);
BasisInfoStruct bis;
Molecule m;
int nx, ny, nz;
if(getenv("RUN_BENCHMARK"))
{
nx = 4;
ny = 4;
nz = 4;
}
else
{
nx = 2;
ny = 2;
nz = 2;
}
const ergo_real space = 8.0;
int atomCount = 0;
for(int ix = 0; ix < nx; ix++)
for(int iy = 0; iy < ny; iy++)
for(int iz = 0; iz < nz; iz++)
{
ergo_real x = ix*space + 0.4*std::cos((ix+iy+iz)*0.2+0.0)*space;
ergo_real y = iy*space + 0.4*std::cos((ix+iy+iz)*0.2+0.3)*space;
ergo_real z = iz*space + 0.4*std::cos((ix+iy+iz)*0.2+0.6)*space;
/* Use a mix of charges: H, C, Zn.
It is good to have some Zn there so we check also usage
of basis functions of f type. */
int charge = 1;
if(atomCount%3 == 0)
charge = 6;
if(atomCount%9 == 0)
charge = 30;
m.addAtom(charge, x, y, z);
atomCount++;
}
if(bis.addBasisfuncsForMolecule(m, ERGO_SPREFIX "/basis/6-31Gss",
0, NULL, biBasic, 0, 0, 0) != 0) {
printf("bis.addBasisfuncsForMolecule failed.\n");
return 1;
}
mat::SizesAndBlocks matrix_size_block_info =
prepareMatrixSizesAndBlocks(bis.noOfBasisFuncs,
20, 8, 8, 8);
std::vector<int> permutationHML(bis.noOfBasisFuncs);
getMatrixPermutation(bis, 20, 8, 8, 8, permutationHML);
symmMatrix D;
D.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix J_1;
J_1.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix J_2;
J_2.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
symmMatrix J_diff;
J_diff.resetSizesAndBlocks(matrix_size_block_info,
matrix_size_block_info);
{
/* Add values to density matrix diagonal and one step
next to diagonal. */
const int nvalues1 = bis.noOfBasisFuncs;
std::vector<int> idxrow(nvalues1);
std::vector<int> idxcol(nvalues1);
std::vector<ergo_real> values(nvalues1);
for(int i=0; i<nvalues1; i++) {
idxrow[i] = i;
idxcol[i] = i;
values[i] = 1.0;
}
D.add_values(idxrow, idxcol, values,
permutationHML,
permutationHML);
const int nvalues2 = bis.noOfBasisFuncs-1;
idxrow.resize(nvalues2);
idxcol.resize(nvalues2);
values.resize(nvalues2);
for(int i=0; i<nvalues2; i++) {
idxrow[i] = i;
idxcol[i] = i+1;
values[i] = 0.3;
}
D.add_values(idxrow, idxcol, values,
permutationHML,
permutationHML);
}
JK::Params J_K_params;
Jworkertest worker(D, biBasic, bis, J_K_params, permutationHML);
MatAccInvestigator<ergo_real, Jworkertest>
investigator(matrix_size_block_info);
int nSteps = 4;
investigator.Scan(worker, 1e-8, sqrt(sqrt(sqrt(10.0))), nSteps);
ergo_real threshList[nSteps];
ergo_real errorList_frob[nSteps];
ergo_real errorList_eucl[nSteps];
ergo_real errorList_maxe[nSteps];
ergo_real timeList[nSteps];
investigator.GetScanResult(threshList,
errorList_frob,
errorList_eucl,
errorList_maxe,
timeList);
printf("Scan result:\n");
for(int i = 0; i < nSteps; i++)
printf("%9.5g %9.5g %9.5g %9.5g\n",
(double)threshList[i],
(double)errorList_frob[i],
(double)errorList_eucl[i],
(double)errorList_maxe[i]);
#if 0
static const ergo_real EPS = std::numeric_limits<ergo_real>::epsilon();
J_K_params.threshold = sqrt(EPS);
J_K_params.fmm_box_size = 10;
if(compute_J_by_boxes_sparse(bis, biBasic, J_K_params, J_1, D) != 0)
{
printf("Error in compute_J_by_boxes_sparse\n");
return -1;
}
J_K_params.fmm_box_size = 4;
if(compute_J_by_boxes_sparse(bis, biBasic, J_K_params, J_2, D) != 0)
{
printf("Error in compute_J_by_boxes_sparse\n");
return -1;
}
J_diff = J_1;
J_diff += (ergo_real)(-1.0) * J_2;
generalVector vector;
vector.build_data_structure(perm);
ergo_real acc = sqrt(EPS);
ergo_real diffNorm = J_diff.eucl(vector, acc);
ergo_real requestedAcc;
if(getenv("RUN_BENCHMARK"))
requestedAcc = J_K_params.threshold*4000;
else
requestedAcc = J_K_params.threshold*200;
if(diffNorm > requestedAcc)
{
printf("Error in J test: diff too large!\n");
printf("diffNorm = %8.4g\n", diffNorm);
printf("requestedAcc = %8.4g\n", requestedAcc);
return -1;
}
#endif
unlink("ergoscf.out");
printf("J extrapolate test OK\n");
return 0;
}
|